Answer:
5. All of the statements are true; non is false
Explanation:
The propagation errors we can find the uncertainty of a given magnitude is the sum of the uncertainties of each magnitude.
Δm = ∑
Physical quantities are precise values of a variable, but all measurements have an uncertainty, in the case of direct measurements the uncertainty is equal to the precision of the given instrument.
When you have derived variables, that is, when measurements are made with different instruments, each with a different uncertainty, the way to find the uncertainty or error is used the propagation errors to use the variation of each parameter, keeping the others constant and taking the worst of the cases, all the errors add up.
If m is the calculated quantity, x_i the measured values and Δx_i the uncertainty of each value, the total uncertainty is
Δm = ∑
| dm / dx_i | Dx_i
for instance:
If the magnitude is a average of two magnitudes measured each with a different error
m =
Δm = |
| Δx₁ + |
| Δx₂
= ½
= ½
Δm =
Δx₁ + ½ Δx₂
Δm = Δx₁ + Δx₂
In conclusion, using the propagation errors we can find the uncertainty of a given quantity is the sum of the uncertainties of each measured quantity.
Learn more about propagation errors here:
brainly.com/question/17175455
Kinetic energy is proportional to the square of the speed. So when anything or anybody speeds up, its kinetic energy increases.
Answer:
Ribosomes are the protein factories of the cell. Composed of two subunits, they can be found floating freely in the cell’s cytoplasm or embedded within the endoplasmic reticulum. Using the templates and instructions provided by two different types of RNA, ribosomes synthesize a variety of proteins that are essential to the survival of the cell.
Hopefully, this helped! :D
Answer:
Another ship travels at an average velocity of 26 km/h for
Explanation: