Answer:
Explanation:
Step one:
given data
initial velocity u= 40m/s
time taken t=3seconds
final velocity v=?
Step two:
applying the first equation of motion
v=u-gt--- (the -ve sign implies that the arrow is against gravity)
assume g=9.81m/s^2
v=40-9.81*3
v=40-29.43
v=10.57m/s
Step three:
how high the target is located
applying
s=ut-1/2gt^2
s=40*3-1/2(9.81)*3^2
s=120-88.29/2
s=120-44.145
s=75.86m
Answer:
4 m/s²
Explanation:
Given:
Δx = 60 m
v₀ = 2.0 m/s
v = 22 m/s
Find: a
v² = v₀² + 2aΔx
(22 m/s)² = (2.0 m/s)² + 2a (60 m)
a = 4 m/s²
A) <u>Weight = mass × acceleration (due to gravity) </u>
= 60×9.8
= 588 N
<u>B) Potential energy = mass x gravity x change in height
</u>
1,000 = 60.0 x 9.8 x h
h = 1.7 m
<u>C) Kinetic energyF = potential energyI
</u>
KEF = 1/2mv2
PEI = mgh = 1,000 J
1/2mv2 = 1,000
1/2(60.0)v2 = 1,000
v2 = 33.33
v = 5.77 m/s
In series with the circuit, so for it pass the current to be mensured.
Letter A
If you notice any mistake in my english, please let me know, because i am not native.