- initial velocity=u=24m/s
- Acceleration=a=4m/s^2
- Distance=s=96m
- Final velocity=v
Using 3rd equation of kinematics







density of water = 
velocity of flow = 
radius of pipe = 
Height of second floor = 
Now we can use here Bernuoli's Equation to find the speed of water flow at second floor



Now in order to find the radius of pipe we can use equation of continuity



So radius of pipe at second floor is 0.034 meter
Answer:
R = 35.27 Ohms
Explanation:
Given the following data;
Voltage = 230V
Power = 1500W
To find the resistance, R;
Power = V²/R
Where:
V is the voltage measured in volts.
R is the resistance measured in ohms.
Substituting into the equation, we have;
1500 = 230²/R
Cross-multiplying, we have;
1500R = 52900
R = 52900/1500
R = 35.27 Ohms.
Therefore, the resistance which the heating element needs to have is 35.27 Ohms.
Answer:

Explanation: Weight of space probes on earth is given by:
W= weight of the object( in N)
m= mass of the object (in kg)
g=acceleration due to gravity(9.81
)
Therefore,


Similarly,


Now, considering these two parts as uniform spherical objects
Also, according to Superposition principle, gravitational net force experienced by an object is sum of all individual forces on the object.
Force between these two objects is given by:

G= gravitational constant (
)
= masses of the object
R= distance between their centres (in m)(18 m)
Substituiting all these values into the above formula

This is the magnitude of force experienced by each part in the direction towards the other part, i.e the gravitational force is attractive in nature.