Answer:
True! First step is to make objective observations.
I believe that this question has the following choices to
choose from:
placer deposits
fossil compaction
hydrothermal solutions
igneous processes
Actually among all, I have never encountered an ore that
formed due to fossil compaction. I suppose we can get minerals such as marble
or lime but not ores. So the answer is:
<span>fossil compaction (answer)</span>
Answer
given,
vertical speed of stone,v = 12 m/s
height of the cliff = 70 m
a) time taken by the stone to reach at the bottom of the cliff
We know that,
S = u t + 1/2 a t²
- 70 = 12 t - 0.5 x 9.8 t²
4.9 t² - 12 t - 70 = 0
solving the equation
t = 5.2 s (neglecting the negative value)
b) again using equation of motion
v = u + a t
v = 12 - 9.8 x 5.2
v = -38.96 m/s
ignoring the negative sign
magnitude of velocity is equal to 38.96 m/s
c) total distance travel by the stone
vertical distance covered by the stone
v² = u² + 2 g h
0 = 12² - 2 x 9.8 x h
h = 7.34 m
to reach the stone to the same level distance travel be doubled.
Total distance travel by the stone
H = h + h + 70
H = 7.34 x 2 + 70
H = 84.7 m.
Answer:
27.82 m/s
Explanation:
The radius of the hose is half of its diameter

So its area must be

The speed of water coming out of the hose is its flow rate divided by the cross-section area of the hose

<span>32 mph
First, let's calculate the location of the particle at t=1, and t=4
t=1
s = 6*t^2 + 2*t
s = 6*1^2 + 2*1
s = 6 + 2
s = 8
t = 4
s = 6*t^2 + 2*t
s = 6*4^2 + 2*4
s = 6*16 + 8
s = 96 + 8
s = 104
So the particle moved from 8 to 104 over the time period of 1 to 4 hours. And the average velocity is simply the distance moved over the time spent. So:
avg_vel = (104-8)/(4-1) = 96/3 = 32
And since the units were miles and hours, that means that the average speed of the particle over the interval [1,4] was 32 miles/hour, or 32 mph.</span>