Answer:An atom's positive particles are surrounded by negative matter, so the negative particles are easier to remove.
Explanation:
From our knowledge of the atom, we know that the nucleus lies at the center of the atom. The nucleus is positively charged because it contains the positive particles in the atom
The negative matter (electrons) surround the positive matter (protons) hence it is easier to remove the negative particles compared to the positive particles.
Ionization energies evidence for the quantization of energy levels in atoms, as described by the Schrodinger wave mechanical model of the atom because it takes a specific amount of energy to remove the definite one electron from an atom.
Explanation:
- Ionization energies evidence for the quantization of energy levels in atoms, as described by the Schrodinger wave mechanical model of the atom because it takes a specific amount of energy to remove the definite one electron from an atom.
- There is an approximate amount of energy which is needed to overcome the attractive force between the electrons and nucleus.
- If you put less than the required ionization energy, then the electrons can not be removed.
Answer:
1.51986 atm
Explanation:
You can also search "154 kPa to atm" and a converter will appear
That it is negatively charged
Explanation:
First, we need to calculate the number of moles of sodium carbonate we have in a 25 g sample. To calculate this, we will
find the molar mass of sodium carbonate (Na2CO3):
⇒ 2 × Molar mass of sodium + Molar mass of carbon + 3×molar mass of oxygen
⇒ 2 × 23 + 12 + 3 × 16
⇒ 46 + 12 + 48
⇒ 106g/mol
Thus, the molar mass of Na2CO3 is 106g/mol.
Therefore, number of moles = 25 ÷ 106
=> 0.2358 mol
Now, we know that every mole of Na2CO3 have 0.2358 moles of Na+ ions. Hence, total moles of Na2CO3 is 0.4716 moles
Number of ions present = 6.022 × 1023 × 0.4716 mol = 2.84 × 1023ions