Answer:37.2 sec
Step-by-step explanation:
Given
Joel takes 81 sec for 14 mile long track
speed of joel
mi/min=10.37 mi/min
Jason takes 69 sec for 14 mi track
so jason speed is 
if both starts from same spot in opposite direction then

where x is distance covered by Joel
then x=6.44 miles
therefore time required

Answer:
The area of the rectangular coral = 2,976 ft²
Step-by-step explanation:
Bryce has 220 ft of fencing to fence a rectangular coral.
Let the dimensions of the corral be x ft. × y ft.
One side of the coral is 48 ft. long
A rectangle has 4 sides, with each of the two opposite sides with the same dimension. Hence, the perimeter of the rectangular coral = 2(x + y) = 2x + 2y.
Total length of material for fencing = 220 ft.
Hence the perimeter of the reef = 220 ft.
2x + 2y = 220
And one length of the rectangular coral = x = 48 ft.
We can solve for the remaining dimension of the rectangular coral this way.
2(48) + 2y = 220
2y = 220 - 96 = 124
y = (124/2) = 62 ft.
Hence, the area of the rectangular coral = xy = 48 × 62 = 2,976 ft²
Hope this Helps!!!
Answer: X = 25
Step-by-step explanation: 5 * 25 = 125
The equation in slope-intercept form for the line that passes through the point ( -1 , -2 ) and is perpendicular to the line − 4 x − 3 y = − 5 is 
<em><u>Solution:</u></em>
<em><u>The slope intercept form is given as:</u></em>
y = mx + c ----- eqn 1
Where "m" is the slope of line and "c" is the y - intercept
Given that the line that passes through the point ( -1 , -2 ) and is perpendicular to the line − 4 x − 3 y = − 5
Given line is perpendicular to − 4 x − 3 y = − 5
− 4 x − 3 y = − 5
-3y = 4x - 5
3y = -4x + 5

On comparing the above equation with eqn 1, we get,

We know that product of slope of a line and slope of line perpendicular to it is -1

Given point is (-1, -2)
Now we have to find the equation of line passing through (-1, -2) with slope 
Substitute (x, y) = (-1, -2) and m = 3/4 in eqn 1



Thus the required equation of line is found