Answer:
B.
Explanation:
A safety-critical system (SCS) or life-critical system is a system whose failure or malfunction may result in one (or more) of the following outcomes: death or serious injury to people. loss or severe damage to equipment/property.
Answer:
6.99 x 10⁻³ m³ / s
Explanation:
Th e pressure difference at the two ends of the delivery pipe due to atmospheric pressure and water column will cause flow of water.
h = difference in the height of water column at two ends of delivery pipe
6 - 1 = 5 m
Velocity of flow of water
v = √2gh
= √ (2 x 9.8 x 5)
= 9.9 m /s
Volume of water flowing per unit time
velocity x cross sectional area
= 9.9 x 3.14 x .015²
= 6.99 x 10⁻³ m³ / s
Answer:
A) About
newtons
B) 76.518 newtons
C) 111.834 newtons
Explanation:
A)
, where G is the universal gravitational constant, M 1 and 2 are the masses of both objects in kilograms, and r is the radius in meters. Plugging in the given numbers, you get:

B) You can find the weight of each object on Earth because you know the approximate acceleration due to gravity is 9.81m/s^2. Multiplying this by the mass of each object, you get a weight for the first particle of 76.518 newtons.
C) You can do a similar thing to the previous particle and find that its weight is 11.4*9.81=111.834 newtons.
Hope this helps!
Answer:
heat loss per 1-m length of this insulation is 4368.145 W
Explanation:
given data
inside radius r1 = 6 cm
outside radius r2 = 8 cm
thermal conductivity k = 0.5 W/m°C
inside temperature t1 = 430°C
outside temperature t2 = 30°C
to find out
Determine the heat loss per 1-m length of this insulation
solution
we know thermal resistance formula for cylinder that is express as
Rth =
.................1
here r1 is inside radius and r2 is outside radius L is length and k is thermal conductivity
so
heat loss is change in temperature divide thermal resistance
Q = 
Q = 
Q = 4368.145 W
so heat loss per 1-m length of this insulation is 4368.145 W