There would be eighteen bonding electrons
<u> electrical energy to chemical energy</u>
Answer:
i say B
Explanation:
tell me if it is the right one
The temperature stays the same when a solid changes to a liquid because energy is required to break the forces between particles of water therefore changing the state of matter and separating the particles away from each other.
When a liquid boils, the energy is needed by the particles to escape the surface of the liquid and boil. Instead of raising the temperature, the energy goes into the particles' kinetic energy store so it has enough speed to escape the surface of the liquid.
<u>Answer:</u> The value of
for the given reaction is 1.435
<u>Explanation:</u>
To calculate the molarity of solution, we use the equation:

Given mass of
= 9.2 g
Molar mass of
= 92 g/mol
Volume of solution = 0.50 L
Putting values in above equation, we get:

For the given chemical equation:

<u>Initial:</u> 0.20
<u>At eqllm:</u> 0.20-x 2x
We are given:
Equilibrium concentration of
= 0.057
Evaluating the value of 'x'

The expression of
for above equation follows:
![K_c=\frac{[NO_2]^2}{[N_2O_4]}](https://tex.z-dn.net/?f=K_c%3D%5Cfrac%7B%5BNO_2%5D%5E2%7D%7B%5BN_2O_4%5D%7D)
![[NO_2]_{eq}=2x=(2\times 0.143)=0.286M](https://tex.z-dn.net/?f=%5BNO_2%5D_%7Beq%7D%3D2x%3D%282%5Ctimes%200.143%29%3D0.286M)
![[N_2O_4]_{eq}=0.057M](https://tex.z-dn.net/?f=%5BN_2O_4%5D_%7Beq%7D%3D0.057M)
Putting values in above expression, we get:

Hence, the value of
for the given reaction is 1.435