<span>There are three different subatomic particles present in the atoms of each element: neutron, proton and </span>electron<span>. It is the </span>electrons<span>, and more specifically the valence </span>electrons<span>, that determine the reactivity of an element.</span>
For equal moles of gas, temperature can be calculated from ideal gas equation as follows:
P×V=n×R×T ...... (1)
Initial volume, temperature and pressure of gas is 3.25 L, 297.5 K and 2.4 atm respectively.
2.4 atm ×3.25 L=n×R×297.5 K
Rearranging,
n\times R=0.0262 atm L/K
Similarly at final pressure and volume from equation (1),
1.5 atm ×4.25 L=n×R×T
Putting the value of n×R in above equation,
1.5 atm ×4.25 L=0.0262 (atm L/K)×T
Thus, T=243.32 K
Answer:
C. 30 kJ
Explanation:
Hello there!
In this case, in agreement to the thermodynamic definition of the Gibbs free energy, in terms of enthalpy of entropy:
It is possible to calculate the required G by plugging in the given entropy and enthalpy as shown below:
Therefore, the answer is C. 30 kJ
.
Best regards!
Answer : The Lewis-dot structure of is shown below.
Explanation :
Lewis-dot structure : It shows the bonding between the atoms of a molecule and it also shows the unpaired electrons present in the molecule.
In the Lewis-dot structure the valance electrons are shown by 'dot'.
The given molecule is,
As we know that rubidium has '1' valence electrons, iodine has '7' valence electrons and oxygen has '6' valence electrons.
Therefore, the total number of valence electrons in = 1 + 7 + 2(6) = 20
As we know that is an ionic compound because it is formed by the transfer of electron takes place from metal to non-metal element.
Answer:
A. electromagnetic energy.
B. thermal energy.
C. solar energy.
D. mechanical energy.
Explanation: