10.0gNaCl/2.0Lsolution= 5.0g/L
Answer:
All the numbers in a chemical formula are significant, It is because the numbers in a chemical formula denote the number of different atoms present in the particular compound.
For example in H2SO4 there are 2 H 1 S and 4 O. This means 1 H2SO4 has 2 hydrogen 1 sulphur and 4 oxygen.
Answer:
They become ductile and deform plastically
Explanation:
When rocks are buried by the materials up to a greater depth, then the confining pressure increases significantly. This results in the ductile behavior of the rocks at such depth. These rocks are present in the ductile region where the depth is about more than 20 to 30 km. Here the rocks are subjected to extremely high pressure and temperature conditions, which favors the transformation of rocks into more higher-grade metamorphic rocks. It is also enhanced due to the geothermal gradient.
Under such high pressure and temperature, the rocks show the behavior of plasticity, where the rocks undergo bending, buckling as well as they tend to flow, and there occurs low strain rate, resulting in the permanent deformation of rocks.
Thus, the rocks become ductile and deform plastically at such conditions.
Answer:
The equation for wave speed can be used to calculate the speed of a wave when both wavelength and wave frequency are known. Consider an ocean wave with a wavelength of 3 meters and a frequency of 1 hertz. The speed of the wave is: Speed = 3 m x 1 wave/s = 3 m/s.
SO... take your meters and hezert and do tha same
Explanation:
Plz mark me as brainlyist
Answer:
Kc = 50.5
Explanation:
We determine the reaction:
H₂ + I₂ ⇄ 2HI
Initially we have 0.001 molesof H₂
and 0.002 moles of I₂
If we have produced 0.00187 moles of HI in the equilibrium we have to know, how many moles of I₂ and H₂, have reacted.
H₂ + I₂ ⇄ 2HI
In: 0.001 0.002 -
R: x x 2x
Eq: 0.001-x 0.002-x 0.00187
x = 0.00187/2 = 9.35×10⁻⁴ moles that have reacted
So in the equilibrium we have:
0.001 - 9.35×10⁻⁴ = 6.5×10⁻⁵ moles of H₂
0.002 - 9.35×10⁻⁴ = 1.065×10⁻³ moles of I₂
Expression for Kc is = (HI)² / (H₂) . (I₂)
0.00187 ² / 6.5×10⁻⁵ . 1.065×10⁻³ = 50.5