Answer:
32.5g of sodium carbonate
Explanation:
Reaction of sodium carbonate (Na₂CO₃) with Mg²⁺ and Ca²⁺ as follows:
Na₂CO₃(aq) + Ca²⁺(aq) → CaCO₃(s)
Na₂CO₃(aq) + Mg²⁺(aq) → MgCO₃(s)
<em>1 mole of carbonate reacts per mole of the cations.</em>
<em />
To know the mass of sodium carbonate we must know the moles of carbonate we need to add based on the moles of the cations:
<em>Moles Mg²⁺:</em>
2.91L * (0.0661 moles MgCl₂ / 1L) = 0.192 moles MgCl₂ = Moles Mg²⁺
<em>Moles Ca²⁺:</em>
2.91L * (0.0396mol Ca(NO₃)₂ / 1L) = 0.115 moles Ca(NO₃)₂ = Moles Ca²⁺
That means moles of sodium carbonate you must add are:
0.192 moles + 0.115 moles = 0.307 moles sodium carbonate.
In grams (Using molar mass Na₂CO₃ = 105.99g/mol):
0.307 moles Na₂CO₃ * (105.99g / mol) =
<h3>32.5g of sodium carbonate</h3>
A) if you have a period table handy it’s the number in the top left hand corner of the element
1) Acidic - gastric juices pH 1, lemon juice pH 2.2, tomato juice pH 4.
2) Neutral - salt solution pH 7.
3) Alkaline - baking soda pH 9, bleach pH 13.
pH is a numeric scale used to specify the acidity or basicity of an aqueous solution.
When pH is less than seven (pH<7), solution is acidic.
When is equal seven (pH = 7), solution is neutral.
When pH is greater than seven (pH > 7), solution is basic.
Rate=[a]*([b]^2)*([c]^(1/2)]
rate=[2a]*([b]^2)*([2c]^(1/2)]= 2*(2^(1/2)[a]*([b]^2)*([c]
it increases times 2*(2^(1/2)=2√2
Answer:
21.86582KJ
Explanation:
The graphical form of the Arrhenius equation is shown on the image attached. Remember that in the Arrhenius equation, we plot the rate constant against the inverse of temperature. The slope of this graph is the activation energy and its y intercept is the frequency factor.
Applying the equation if a straight line, y=mx +c, and comparing the given equation with the graphical form of the Arrhenius equation shown in the image attached, we obtain the activation energy of the reaction as shown.