1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Musya8 [376]
3 years ago
8

What are the solutions to m2 – 9 = 0?

Mathematics
2 answers:
stiv31 [10]3 years ago
4 0

Answer:

m=-3

Step-by-step explanation:

m2-9=0

2 divied by 9 =3

when you have a positive number and a negitive number =a negitive

I think you get the point

STALIN [3.7K]3 years ago
4 0

Answer:

m = –3 and m = 3

Step-by-step explanation:

You might be interested in
331 students went on a field trip. Six buses were filled and 7 student traveled in cars. How many students were in buses.
lilavasa [31]
Yes because you subtract seven from 331 and that gives you 324 and you divide 324 divided by 6 and that gives you 54
3 0
3 years ago
I NEED HELP PLEASE, IM STUCK ON MOST OF THEM
azamat

Answer: look it up

Step-by-step explanation: Lollll

6 0
2 years ago
(6x-5y+4)dy+(y-2x-1)dx=0​
Len [333]

(6<em>x</em> - 5<em>y</em> + 4) d<em>y</em> + (<em>y</em> - 2<em>x</em> - 1) d<em>x</em> = 0

(6<em>x</em> - 5<em>y</em> + 4) d<em>y</em> = (2<em>x</em> - <em>y</em> + 1) d<em>x</em>

d<em>y</em>/d<em>x</em> = (2<em>x</em> - <em>y</em> + 1) / (6<em>x</em> - 5<em>y</em> + 4)

Let <em>X</em> = <em>x</em> - <em>a</em> and <em>Y</em> = <em>y</em> - <em>b</em>. We want to find constants <em>a</em> and <em>b</em> such that

d<em>Y</em>/d<em>X</em> = (a rational function)

where the numerator and denominator on the right side are free of constant terms. Substituting <em>x</em> and <em>y</em> in the equation, we have

d<em>Y</em>/d<em>X</em> = (2 (<em>X</em> + <em>a</em>) - (<em>Y</em> + <em>b</em>) + 1) / (6 (<em>X</em> + <em>a</em>) - 5 (<em>Y</em> + <em>b</em>) + 4)

d<em>Y</em>/d<em>X</em> = (2<em>X</em> - <em>Y</em> + 2<em>a</em> - <em>b</em> + 1) / (6<em>X</em> - 5<em>Y</em> + 6<em>a</em> - 5<em>b</em> + 4)

Then we solve for <em>a</em> and <em>b</em> in the system,

2<em>a</em> - <em>b</em> + 1 = 0

6<em>a</em> - 5<em>b</em> + 4 = 0

==>   <em>a</em> = -1/4 and <em>b</em> = 1/2

With these constants, the equation reduces to

d<em>Y</em>/d<em>X</em> = (2<em>X</em> - <em>Y</em>) / (6<em>X</em> - 5<em>Y</em>)

Now substitute <em>Y</em> = <em>VX</em> and d<em>Y</em>/d<em>X</em> = <em>X</em> d<em>V</em>/d<em>X</em> + <em>V</em> :

<em>X</em> d<em>V</em>/d<em>X</em> + <em>V</em> = (2<em>X</em> - <em>VX</em>) / (6<em>X</em> - 5<em>VX</em>)

The equation becomes separable after some simplification:

<em>X</em> d<em>V</em>/d<em>X</em> + <em>V</em> = (2 - <em>V</em>) / (6 - 5<em>V</em>)

<em>X</em> d<em>V</em>/d<em>X</em> = (2 - <em>V</em>) / (6 - 5<em>V</em>) - <em>V</em>

<em>X</em> d<em>V</em>/d<em>X</em> = (2 - <em>V</em> - (6 - 5<em>V</em>)) / (6 - 5<em>V</em>)

<em>X</em> d<em>V</em>/d<em>X</em> = (4<em>V</em> - 4) / (6 - 5<em>V</em>)

- (5<em>V</em> - 6) / (4<em>V</em> - 4) d<em>V</em> = 1/<em>X</em> d<em>X</em>

Integrate both sides:

-5/4 <em>V</em> + 1/4 ln|4<em>V</em> - 4| = ln|<em>X</em>| + <em>C</em>

Extract a constant from the logarithm on the left:

-5/4 <em>V</em> + 1/4 (ln(4) + ln|<em>V</em> - 1|) = ln|<em>X</em>| + <em>C</em>

-5/4 <em>V</em> + 1/4 ln|<em>V</em> - 1| = ln|<em>X</em>| + <em>C</em>

-5<em>V</em> + ln|<em>V</em> - 1| = 4 ln|<em>X</em>| + <em>C</em>

Get this back in terms of <em>Y</em> :

-5<em>Y/X</em> + ln|<em>Y/X</em> - 1| = 4 ln|<em>X</em>| + <em>C</em>

Now get the solution in terms of <em>y</em> and <em>x</em> :

-5 (<em>y</em> - 1/2)/(<em>x</em> + 1/4) + ln|(<em>y</em> - 1/2)/(<em>x</em> + 1/4) - 1| = 4 ln|<em>x</em> + 1/4| + <em>C</em>

<em />

With some manipulation of constants and logarithms, and a bit of algebra, we can rewrite this solution as

-5 (4<em>y</em> - 2)/(4<em>x</em> + 1) + ln|(4<em>y</em> - 4<em>x</em> - 3)/(4<em>x</em> + 1)| = 4 ln|<em>x</em> + 1/4| + 4 ln(4) + <em>C</em>

-5 (4<em>y</em> - 2)/(4<em>x</em> + 1) + ln|(4<em>y</em> - 4<em>x</em> - 3)/(4<em>x</em> + 1)| = 4 ln|4<em>x</em> + 1| + <em>C</em>

-5 (4<em>y</em> - 2)/(4<em>x</em> + 1) + ln|4<em>y</em> - 4<em>x</em> - 3| - ln|4<em>x</em> + 1| = 4 ln|4<em>x</em> + 1| + <em>C</em>

-5 (4<em>y</em> - 2)/(4<em>x</em> + 1) + ln|4<em>y</em> - 4<em>x</em> - 3| = 5 ln|4<em>x</em> + 1| + <em>C</em>

8 0
3 years ago
Sunny made 2 pitchers of strawberry smoothies for the science club. If each person got One-fifth of a pitcher, how many science
bagirrra123 [75]

Answer:

tell me what grade u are in and I will try my best to help

5 0
3 years ago
Read 2 more answers
1. Given the below sequence: -1, -3, -5, -7, . . . (a) What are the next 3 terms? (b) Is this an arithmetic or geometric sequenc
valentinak56 [21]

Answer:

(a) -7 , - 9 , - 11

(b) Arithmetic sequence

(c) There is a common difference of -2

(d) -53

Step-by-step explanation:

(a) To find the next three terms , we must firs check if it is arithmetic sequence or a geometric sequence . For it to be an arithmetic sequence , there must be a common difference :

check :

-3 - (-1) = -5 - (-3) = -7 - (-5)  = -2

This means that there is a common difference of -2 , which means it is an arithmetic sequence.

The next 3 terms we are to find are: 5th term , 6th term and 7th term.

t_{5} = a + 4d

t_{5} = - 1 + 4 ( -2 )

t_{5} = -1 - 8

t_{5} = - 9

6th term = a +5d

t_{6} = -1 + 5(-2)

t_{6} = -1 - 10

t_{6} = - 11

t_{7} = a + 6d

t_{7} = -1 + 6 (-2)

t_{7} = -1 - 12

t_{7} = -13

Therefore : the next 3 terms are : -9 , -11 , - 13

(b) it is an arithmetic sequence because there is a common difference which is -2

(c) Because of the existence of common difference

(d) t_{27} = a + 26d

t_{27} = -1 + 26 ( -2 )

t_{27} = -1 - 52

t_{27} = - 53

5 0
3 years ago
Other questions:
  • What is the associative property to (27+36)+23
    12·1 answer
  • When you read S(h) aloud you can shorten it to "s of h"
    6·2 answers
  • Investors buy a studio apartment for $ 150,000. Of this​ amount, they have a down payment of $ 15,000. Their down payment is wha
    7·1 answer
  • Approximate the number 32 to the nearest hundreth
    7·1 answer
  • Which exponent makes the statement true?
    9·2 answers
  • AWARDING BRAINLIEST
    14·2 answers
  • Please help, please pleaseeeeeeee
    10·2 answers
  • What are the answers to 1 2 and 3?
    10·1 answer
  • Create a matrix that is equal to F+G. The first matrix below is named F and the second matrix below is named G. Name the new mat
    12·1 answer
  • Which of the following are examples of solids?
    15·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!