Answer:
<h3> ...............................<em>.</em><em>.</em><em>.</em><em>.</em><em>.</em><em>.</em><em>.</em><em>.</em><em>.</em><em>.</em><em>.</em><em>.</em><em>.</em><em>.</em><em>.</em><em>.</em><em>.</em><em>.</em><em>.</em><em>.</em><em>.</em><em>.</em><em>.</em><em>.</em><em>.</em><em>.</em><em>.</em><em>.</em><em>.</em></h3>
Answer:
24
Step-by-step explanation:
The outlier is the value that is far from the other values in the set
24 is far from the other values
Answer:
A solution is said to be extraneous, if it is a zero of the equation, but it does not satisfy the equation,when substituted in the original equation,L.H.S≠R.H.S.
The given equation consisting of variable , m is
![\frac{2 m}{2 m+3} -\frac{2 m}{2 m-3}=1\\\\ 2 m[\frac{1}{2 m+3} -\frac{1}{2 m-3}]=1\\\\ 2 m\times \frac{[2 m-3 -2 m- 3]}{4m^2-9}=1\\\\ -6 \times 2 m=4 m^2 -9\\\\ 4 m^2 +1 2 m -9=0\\\\m=\frac{-12 \pm\sqrt{12^2-4 \times 4 \times (-9)}}{2\times 4}\\\\m=\frac{-12 \pm \sqrt {144+144}}{8}\\\\m=\frac{-12 \pm \sqrt {288}}{8}\\\\m=\frac{-12 \pm 12 \sqrt{2}}{8}\\\\m=\frac{3}{2}\times(-1 \pm \sqrt{2})](https://tex.z-dn.net/?f=%5Cfrac%7B2%20m%7D%7B2%20m%2B3%7D%20-%5Cfrac%7B2%20m%7D%7B2%20m-3%7D%3D1%5C%5C%5C%5C%202%20m%5B%5Cfrac%7B1%7D%7B2%20m%2B3%7D%20-%5Cfrac%7B1%7D%7B2%20m-3%7D%5D%3D1%5C%5C%5C%5C%202%20m%5Ctimes%20%5Cfrac%7B%5B2%20m-3%20-2%20m-%203%5D%7D%7B4m%5E2-9%7D%3D1%5C%5C%5C%5C%20-6%20%5Ctimes%202%20m%3D4%20m%5E2%20-9%5C%5C%5C%5C%204%20m%5E2%20%2B1%202%20m%20-9%3D0%5C%5C%5C%5Cm%3D%5Cfrac%7B-12%20%5Cpm%5Csqrt%7B12%5E2-4%20%5Ctimes%204%20%5Ctimes%20%28-9%29%7D%7D%7B2%5Ctimes%204%7D%5C%5C%5C%5Cm%3D%5Cfrac%7B-12%20%5Cpm%20%5Csqrt%20%7B144%2B144%7D%7D%7B8%7D%5C%5C%5C%5Cm%3D%5Cfrac%7B-12%20%5Cpm%20%5Csqrt%20%7B288%7D%7D%7B8%7D%5C%5C%5C%5Cm%3D%5Cfrac%7B-12%20%5Cpm%2012%20%5Csqrt%7B2%7D%7D%7B8%7D%5C%5C%5C%5Cm%3D%5Cfrac%7B3%7D%7B2%7D%5Ctimes%28-1%20%5Cpm%20%5Csqrt%7B2%7D%29)
None of the two solution
, is extraneous.
Here, L.H.S= R.H.S
Option A: 0→ extraneous
A vertical stretch of scale factor 2, followed by a translation of 4 units left and 1 unit down is written as:
g(x) = 2*f(x + 4) - 1
<h3>
How to write the given transformation?</h3>
For a general function f(x), a vertical stretch of scale factor K is written as:
g(x) = K*f(x).
<u><em>Horizontal translation:</em></u>
For a general function f(x), a horizontal translation of N units is written as:
g(x) = f(x + N).
- If N is positive, the shift is to the left.
- If N is negative, the shift is to the right.
<u><em>Vertical translation:</em></u>
For a general function f(x), a vertical translation of N units is written as:
g(x) = f(x) + N.
- If N is positive, the shift is upwards.
- If N is negative, the shift is downwards.
So, if we start with a function f(x) and we stretch it vertically with a scale factor of 2, we get:
g(x) = 2*f(x)
Then we translate it 4 units left:
g(x) = 2*f(x + 4)
Then we translate 1 unit down:
g(x) = 2*f(x + 4) - 1
This is the equation for the transformation.
If you want to learn more about transformations, you can read:
brainly.com/question/4289712