The correct option will be: C) 0.84
<u><em>Explanation</em></u>
Formula for Correlation coefficient :
![r= \frac{n(\Sigma xy)-(\Sigma x)(\Sigma y)}{\sqrt{[n\Sigma x^2-(\Sigma x)^2][n\Sigma y^2-(\Sigma y)^2]}}](https://tex.z-dn.net/?f=r%3D%20%5Cfrac%7Bn%28%5CSigma%20xy%29-%28%5CSigma%20x%29%28%5CSigma%20y%29%7D%7B%5Csqrt%7B%5Bn%5CSigma%20x%5E2-%28%5CSigma%20x%29%5E2%5D%5Bn%5CSigma%20y%5E2-%28%5CSigma%20y%29%5E2%5D%7D%7D)
First, for each point(x, y), we need to calculate x², y² and xy .
Then, we will find sum all x, y, x², y² and xy, which gives us Σx, Σy, Σx², ∑y² and Σxy
<em>(Please refer to the attached image for the table )</em>
Here we got, ∑x = 44 , ∑y = 183 , ∑x² = 362 , ∑y² = 6575 and ∑xy = 1480
'n' is the total number of data set, which is 7 here.
So, plugging those values into the above formula..........
![r= \frac{n(\Sigma xy)-(\Sigma x)(\Sigma y)}{\sqrt{[n\Sigma x^2-(\Sigma x)^2][n\Sigma y^2-(\Sigma y)^2]}}\\ \\ r=\frac{7(1480)-(44)(183)}{\sqrt{[7(362)-(44)^2][7(6575)-(183)^2]}}\\ \\ r=\frac{10360-8052}{\sqrt{(598)(12536)}}\\ \\ r=\frac{2308}{\sqrt{7496528}}\\ \\ r=0.84](https://tex.z-dn.net/?f=r%3D%20%5Cfrac%7Bn%28%5CSigma%20xy%29-%28%5CSigma%20x%29%28%5CSigma%20y%29%7D%7B%5Csqrt%7B%5Bn%5CSigma%20x%5E2-%28%5CSigma%20x%29%5E2%5D%5Bn%5CSigma%20y%5E2-%28%5CSigma%20y%29%5E2%5D%7D%7D%5C%5C%20%5C%5C%20r%3D%5Cfrac%7B7%281480%29-%2844%29%28183%29%7D%7B%5Csqrt%7B%5B7%28362%29-%2844%29%5E2%5D%5B7%286575%29-%28183%29%5E2%5D%7D%7D%5C%5C%20%5C%5C%20r%3D%5Cfrac%7B10360-8052%7D%7B%5Csqrt%7B%28598%29%2812536%29%7D%7D%5C%5C%20%5C%5C%20r%3D%5Cfrac%7B2308%7D%7B%5Csqrt%7B7496528%7D%7D%5C%5C%20%5C%5C%20r%3D0.84)
So, the value of the correlation coefficient is 0.84