Answer:
a)The component form is
![\vec {QP}=\binom{ - 1}{ - 8}](https://tex.z-dn.net/?f=%5Cvec%20%7BQP%7D%3D%5Cbinom%7B%20-%201%7D%7B%20-%208%7D%20)
b)The magnitude is √65
c) <2,14>
Step-by-step explanation:
Recall that:
![\vec {QP}=\vec {OP}-\vec{OQ}](https://tex.z-dn.net/?f=%5Cvec%20%7BQP%7D%3D%5Cvec%20%7BOP%7D-%5Cvec%7BOQ%7D)
We substitute the position vectors to get:
![\vec {QP}=\binom{ - 8}{7} - \binom { - 7}{15}](https://tex.z-dn.net/?f=%5Cvec%20%7BQP%7D%3D%5Cbinom%7B%20-%208%7D%7B7%7D%20-%20%20%5Cbinom%20%7B%20-%207%7D%7B15%7D%20)
We subtract the corresponding components to obtain:
![\vec {QP}=\binom{ - 8 - - 7}{7 - 15}](https://tex.z-dn.net/?f=%5Cvec%20%7BQP%7D%3D%5Cbinom%7B%20-%208%20-%20%20-%207%7D%7B7%20-%2015%7D%20)
This gives:
![\vec {QP}=\binom{ - 8 + 7}{7 - 15}](https://tex.z-dn.net/?f=%5Cvec%20%7BQP%7D%3D%5Cbinom%7B%20-%208%20%20%2B%207%7D%7B7%20-%2015%7D%20)
This simplifies to:
![\vec {QP}=\binom{ - 1}{ - 8}](https://tex.z-dn.net/?f=%5Cvec%20%7BQP%7D%3D%5Cbinom%7B%20-%201%7D%7B%20-%208%7D%20)
The magnitude of a vector in the component form:
![\binom{x}{y}](https://tex.z-dn.net/?f=%20%5Cbinom%7Bx%7D%7By%7D)
is
![\sqrt{ {x}^{2} + {y}^{2} }](https://tex.z-dn.net/?f=%20%5Csqrt%7B%20%7Bx%7D%5E%7B2%7D%20%20%2B%20%20%7By%7D%5E%7B2%7D%20%7D%20)
This means:
![|\vec {QP}|= \sqrt{ {( - 1)}^{2} + {( - 8)}^{2} }](https://tex.z-dn.net/?f=%20%7C%5Cvec%20%7BQP%7D%7C%3D%20%5Csqrt%7B%20%7B%28%20-%201%29%7D%5E%7B2%7D%20%20%2B%20%20%7B%28%20-%208%29%7D%5E%7B2%7D%20%7D%20)
This simplifies to:
![|\vec {QP}| = \sqrt{ 1 + 64 }](https://tex.z-dn.net/?f=%20%7C%5Cvec%20%7BQP%7D%7C%20%3D%20%5Csqrt%7B%201%20%2B%20%2064%20%7D%20)
![|\vec {QP}| = \sqrt{ 65 }](https://tex.z-dn.net/?f=%20%7C%5Cvec%20%7BQP%7D%7C%20%3D%20%5Csqrt%7B%2065%20%7D%20)
c) We have the vectors u = <4, 8>, v = <-2, 6>.
We want to find:
u+v
This implies that:
u+v=<4,8>+<-2,6>
We add the corresponding components to get;
u+v=<4+-2,8+6>
This simplifies to:
u+v=<2,14>