Step-by-step explanation:
For no 1
<em>2</em><em>5</em><em> </em><em>-</em><em> </em><em>3x </em><em>=</em><em> </em><em>4</em><em>0</em><em> </em>
<em>-</em><em> </em><em>3x </em><em>=</em><em> </em><em>4</em><em>0</em><em> </em><em>-</em><em> </em><em>2</em><em>5</em><em> </em>
<em>-</em><em> </em><em>3x </em><em>=</em><em> </em><em>1</em><em>5</em><em> </em>
<em> </em><em>-</em><em> </em><em>x </em><em>=</em><em> </em><em>1</em><em>5</em><em> </em><em>/</em><em> </em><em>3</em>
<em>Therefore </em><em> </em><em>x </em><em>=</em><em> </em><em>-</em><em> </em><em>5</em><em> </em>
<em>Now </em><em>for </em><em>no. </em><em> </em><em>2</em>
<em>1</em><em>/</em><em>3</em><em> </em><em>(</em><em> </em><em>x </em><em>-</em><em> </em><em>1</em><em>0</em><em>)</em><em> </em><em>=</em><em> </em><em>-</em><em> </em><em>4</em><em> </em>
<em>(</em><em> </em><em>x </em><em>-</em><em> </em><em>1</em><em>0</em><em> </em><em>)</em><em> </em><em>=</em><em> </em><em>-</em><em> </em><em>1</em><em>2</em><em> </em>
<em>x </em><em>=</em><em> </em><em>-</em><em> </em><em>1</em><em>2</em><em> </em><em>+</em><em> </em><em>1</em><em>0</em>
<em>Therefore </em><em> </em><em>x </em><em>=</em><em> </em><em>-</em><em> </em><em>2</em><em> </em>
<em>Hope </em><em>it </em><em>will </em><em>help </em><em>:</em><em>)</em>
Answer:
2 real solutions
Step-by-step explanation:
Remember this messy thing?

The <em>quadratic formula</em>, as it's called, gives us the roots to any quadratic equation in standard form (ax² + bx + c = 0). The information on the <em>type</em> of roots is contained entirely in that bit under the square root symbol (b² - 4ac), called the <em>discriminant</em>. If it's non-negative, we'll have <em>real</em> roots, if it's negative, we'll have <em>complex roots</em>.
For our equation, we have a discrimant of (-3)² - 4(6)(-4) = 9 + 96 = 105, which is non-negative, so we'll have real solutions, and since quadratics are degree 2, we'll have exactly 2 real solutions.
Answer:
c = 
Step-by-step explanation:
To make a perfect square
add ( half the coefficient of the x- term )² to x² + 5x
x² + 5x + (
)²
= x² + 5x + 
= (x +
)² ← a perfect square
Answer:
-1/2
Step-by-step explanation:
The slope of the given line is the coefficient of x, which is 2.
The slope of the perpendicular line is the negative reciprocal of that:
-1/2