For idea gases, volume is directly proportional to temperature. That is, an increase in temperature leads to increase in volume and vice versa.
Therefore,
V1/T1 = V2/T2 => T2 = (V2*T1)/V1
Assuming that the balloon is spherical in shape,
V= 4/3*pi*R^3.... In the formula for calculating T2, 4/3*pi cancels out.
R1 = 30/2 15 cm; R2 = 30.5/2 = 15.25 cm; T1 = 20+273.15 =293.15 K
Therefore,
T2 = (R2^3*T1)/R1^3 = (15.25^3*293.15)/15^3 = 308.05 K = 34.9 °C
Answers:
B.) 
C.) 
Explanation:
The image attached shows the way the force
is acting on the block. Now, if we draw a free body diagram of the situation and write the equations for the Net Force in X and Y, we will have the following:
Net Force in X:
(1)
Where:
is the Normal force
is the magnitude of the force exerted on the block
is the angle
Net Force in Y:
(2)
Where:
is the Friction force (it is expresed with the
sign because this force may be up or down, we cannot know because the block is at rest)
is the gravity force
Rewrittin (1):
(3) This is according to option B
Rewritting (2):
(3) This is according to option C
Answer:
Momentum is define as the product of the mass and velocity of a body. It is measured in Kgm/s.
Explanation:
Momentum is the product of mass and velocity of an object. When an object or a body of mass 'm' is moving with velocity 'v', then its momentum can be determined as;
momentum (P) = mass × velocity
i.e P = m × v
= mv
It is measured in Kgm/s.
The change in momentum of a body is referred to as its impulse (Ft).
ΔP = m(v - u) = Ft
Where: P is the momentum of the object, m is its mass, v is its final velocity, u is the initial velocity, F is the force and t is the time in which the force acts.
The answer is c .Frequency