So,
GPE (graviational potential energy) = mass x g x height
GPE is depends on where zero height is defined. In this situation, we define h = 0 as the initial height.



The builder has gained 18.375 kJ of PE.
It Increases. I just took a quiz with the same question.
Answer:
v = 2.45 m/s
Explanation:
first we find the time taken during this motion by considering the vertical motion only and applying second equation of motion:
h = Vi t + (1/2)gt²
where,
h = height of cliff = 15 m
Vi = Initial Vertical Velocity = 0 m/s
t = time taken = ?
g = 9.8 m/s²
Therefore,
15 m = (0 m/s) t + (1/2)(9.8 m/s²)t²
t² = (15 m)/(4.9 m/s²)
t = √3.06 s²
t = 1.75 s
Now, we consider the horizontal motion. Since, we neglect air friction effects. Therefore, the horizontal motion has uniform velocity. Therefore,
s = vt
where,
s = horizontal distance covered = 4.3 m
v = original horizontal velocity = ?
Therefore,
4.3 m = v(1.75 s)
v = 4.3 m/1.75 s
<u>v = 2.45 m/s</u>
Answer:
11 m/s south
Explanation:
The velocity of the passenger relative to the river bank is equal to the velocity of the passenger relative to the ferry, plus the velocity of the ferry relative to the river, plus the velocity of the river relative to the river bank.
v_passenger,bank = v_passenger,ferry + v_ferry,river + v_river,bank
If we take north to be positive and south to be negative:
v = 1.0 m/s + (-10 m/s) + (-2 m/s)
v = -11 m/s
v = 11 m/s south
Answer:
Gravitational Potential Energy
Explanation:
As an object falls from rest, its gravitational potential energy is converted to kinetic energy. Conservation of energy as a tool permits the calculation of the velocity just before it hits the surface.