Complete Question
Q. Two go-carts, A and B, race each other around a 1.0km track. Go-cart A travels at a constant speed of 20m/s. Go-cart B accelerates uniformly from rest at a rate of 0.333m/s^2. Which go-cart wins the race and by how much time?
Answer:
Go-cart A is faster
Explanation:
From the question we are told that
The length of the track is 
The speed of A is 
The uniform acceleration of B is 
Generally the time taken by go-cart A is mathematically represented as
=> 
=> 
Generally from kinematic equation we can evaluate the time taken by go-cart B as

given that go-cart B starts from rest u = 0 m/s
So

=>
=>
Comparing
we see that
is smaller so go-cart A is faster
Answer:
2C
Explanation:
The equivalent capacitance of a parallel combination of capacitors is the sum of their capacitance.
So, if the capacitance of each capacitor is half the previous one, we have a geometric series with first term = C and rate = 0.5.
Using the formula for the sum of the infinite terms of a geometric series, we have:
Sum = First term / (1 - rate)
Sum = C / (1 - 0.5)
Sum = C / 0.5 = 2C
So the equivalent capacitance of this parallel connection is 2C.
From the concept of optics on a curvature of a spherical mirror, the proportion for which the focal length is equivalent to half the radius of curvature is fulfilled. Mathematically this is

Here,
f = Focal Length
R = Radius
Rearranging to find the radius we have,

Replacing with our values,
R = 2(13.8cm)
R = 27.6cm
Therefore the radius of the spherical surface from which the mirror was made is 27.6cm
Answer:
Gravity is the only force acting on a falling ball because of free fall. Since gravity is unbalanced it accelerates an object and the velocity increases as an object falls due to gravity pushing it. The acceleration due to gravity is 9.8 m/s^2.