We have the equation of motion
, where s is the displacement, a is the acceleration, u is the initial velocity and t is the time taken.
Here s = 300 m, u = 0 m/s, a = 9.81
Substituting

Now we have v = u+at, where v is the final velocity
Here u = 0 m/s, a= 9.81
and t = 7.82 seconds
Substituting
v = 0+9.8*7.82 = 76.68 m/s
The speed with which the penny strikes the ground = 76.68 m/s.
Answer:
400cm^2
Explanation:
sides are 20cm long Area for a square is a squared
since all the lides are of equal length you can just choose one side.
20squared is 400
20 x 20 = 400cm squared
Hope this helps :)
I am pretty sure that<span> the following which describes the charge of an atom before any electrons are transferred is </span>neutral charge. According to the fact that <span> atom is always like that before ionization, this answer is definitely correct. Hope it helps!</span>
By dropping a ball and seeing how long it takes to hit the ground or throw a ball up and time it as well
The distance of the galaxy is 32.86 Mpc.
Using the hubble law, v = H₀D where v = apparent velocity of galaxy = 2300 km/s, H = hubble constant = 70 km/s/Mpc and D = distance of galaxy.
Since we require the distance of the galaxy, we make D subject of the formula in the equation. So, we have
D = v/H₀
Substituting the values of the variables into the equation, we have
D = 2300 km/s ÷ 70 km/s/Mpc
D = 32.86 Mpc
So, the distance of the galaxy is 32.86 Mpc
Learn more about hubble law here:
brainly.com/question/18484687