1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
11111nata11111 [884]
3 years ago
14

The volume of a gas in a container varies inversely with the pressure on the gas. A container of helium has a volume of 370in3 u

nder a pressure of 15psi (pounds per square inch). Write the equation that relates the volume, V, to the pressure, P. What would be the volume of this gas if the pressure was increased to 25psi?
Mathematics
1 answer:
Elan Coil [88]3 years ago
5 0

Answer:

Step-by-step explanation:

When two variables vary inversely, it means that an increase in one would lead to a decrease in the other and vice versa. Since the volume of a gas, V in a container varies inversely with the pressure on the gas, P, if we introduce a constant of proportionality, k, the expression would be

V = k/P

If V = 370 in³ and P = 15psi, then

370 = k/15

k = 370 × 15 = 5550

The equation that relates the volume, V, to the pressure, P would be

V = 5550/P

if the pressure was increased to 25psi, the volume would be

V = 5550/25 = 222 in³

You might be interested in
TIMED PLEASE HURRY HELP WITH 2 EASY QUESTIONS
Alex_Xolod [135]
<h2>                         Question # 1</h2><h2>Which statements are true?</h2><h2 /><h3><u>Analyzing and solving the first statement:</u></h3>
  • 4g^2-g=g^2\left(4-g\right)

Solving the expression

4g^2-g

\mathrm{Apply\:exponent\:rule}:\quad \:a^{b+c}=a^ba^c

g^2=gg

So,

4gg-g

\mathrm{Factor\:out\:common\:term\:}g

g\left(4g-1\right)

So,

4g^2-g:\quad g\left(4g-1\right)

Therefore, the statement 4g^2-g=g^2\left(4-g\right) is NOT CORRECT.

<h3><u>Analyzing and solving the second statement:</u></h3>
  • 35g^5-25g^2=\:5g^2\left(7g^3-5\right)

Solving the expression

35g^5-25g^2

\mathrm{Apply\:exponent\:rule}:\quad \:a^{b+c}=a^ba^c

g^5=g^3g^2

So,

35g^3g^2-25g^2

\mathrm{Rewrite\:}25\mathrm{\:as\:}5\cdot \:5

\mathrm{Rewrite\:}35\mathrm{\:as\:}5\cdot \:7

5\cdot \:7g^3g^2-5\cdot \:5g^2

\mathrm{Factor\:out\:common\:term\:}5g^2

5g^2\left(7g^3-5\right)

So,

35g^5-25g^2=\:5g^2\left(7g^3-5\right)

Therefore, the statement 35g^5-25g^2=\:5g^2\left(7g^3-5\right) is CORRECT.

<h3><u>Analyzing and solving the third statement:</u></h3>
  • 24g^4+18g^2=\:6g^2\left(4g^2+3g\right)
<h3 />

Solving the expression

<h3>24g^4+18g^2</h3><h3>24g^2g^2+18g^2</h3><h3>\mathrm{Rewrite\:}18\mathrm{\:as\:}6\cdot \:3</h3><h3>\mathrm{Rewrite\:}24\mathrm{\:as\:}6\cdot \:4</h3><h3>6\cdot \:4g^2g^2+6\cdot \:3g^2</h3><h3>\mathrm{Factor\:out\:common\:term\:}6g^2</h3><h3>6g^2\left(4g^2+3\right)</h3>

So,

<h3>24g^4+18g^2=6g^2\left(4g^2+3\right)</h3>

Therefore, the statement 24g^4+18g^2=\:6g^2\left(4g^2+3g\right)  is CORRECT.

<h3><u>Analyzing and solving the fourth statement:</u></h3>
  • 9g^3+12=\:3\left(3g^3+4\right)

Solving the expression

9g^3+12

\mathrm{Rewrite\:}12\mathrm{\:as\:}3\cdot \:4

\mathrm{Rewrite\:}9\mathrm{\:as\:}3\cdot \:3

3\cdot \:3g^3+3\cdot \:4

\mathrm{Factor\:out\:common\:term\:}3

3\left(3g^3+4\right)

So,

9g^3+12=\:3\left(3g^3+4\right)

Therefore, the statement 9g^3+12=\:3\left(3g^3+4\right) is CORRECT.

<h2>                         Question # 2</h2><h2>Which expressions are completely factored?</h2>

<u>Solving first expression</u>

Considering the expression

  • 30a^6-24a^2

30a^6-24a^2

30a^4a^2-24a^2

\mathrm{Rewrite\:}24\mathrm{\:as\:}6\cdot \:4

\mathrm{Rewrite\:}30\mathrm{\:as\:}6\cdot \:5

6\cdot \:5a^4a^2-6\cdot \:4a^2

\mathrm{Factor\:out\:common\:term\:}3a^2

3a^2\left(10a^4-8\right)

Thus, the expression 30a^6-24a^2=3a^2\left(10a^4-8\right)\: is completely factored.

<u>Solving second expression</u>

Considering the expression

  • 12a^3-8a

12a^3-8a

\mathrm{Apply\:exponent\:rule}:\quad \:a^{b+c}=a^ba^c

a^3=a^2a

So,

12a^2a-8a

\mathrm{Rewrite\:}8\mathrm{\:as\:}4\cdot \:2

\mathrm{Rewrite\:}12\mathrm{\:as\:}4\cdot \:3

4\cdot \:3a^2a-4\cdot \:2a

\mathrm{Factor\:out\:common\:term\:}4

4\left(3a^3-2a\right)

Thus, the expression 12a^3-8a=\:4\left(3a^3-2a\right) is completely factored.

<u>Solving third expression</u>

  • 16a^5-20a^3\:\:\:\:\:\:\:\:\:\:\:\:

16a^5-20a^3

\mathrm{Apply\:exponent\:rule}:\quad \:a^{b+c}=a^ba^c

a^5=a^2a^3

So,

16a^2a^3-20a^3

\mathrm{Rewrite\:}20\mathrm{\:as\:}4\cdot \:5

\mathrm{Rewrite\:}16\mathrm{\:as\:}4\cdot \:4

4\cdot \:4a^2a^3-4\cdot \:5a^3

\mathrm{Factor\:out\:common\:term\:}4a^3

4a^3\left(4a^2-5\right)

Thus, the expression 16a^5-20a^3\:=4a^3\left(4a^2-5\right) is completely factored.

<u>Solving fourth expression</u>

  • 24a^4+18

24a^4+18

\mathrm{Rewrite\:}18\mathrm{\:as\:}6\cdot \:3

\mathrm{Rewrite\:}24\mathrm{\:as\:}6\cdot \:4

6\cdot \:4a^4+6\cdot \:3

\mathrm{Factor\:out\:common\:term\:}6

6\left(4a^4+3\right)

Thus, the expression 24a^4+18=6\left(4a^4+3\right) is completely factored.

Keywords: expression, factoring

Learn more about expression factoring from brainly.com/question/14051207

#learnwithBrainly

8 0
3 years ago
Mathematical symbols are critical to the discipline of statistics. A symbol can help identify which distribution and what type o
Shtirlitz [24]

Answer: sigma is used for measuring Population Standard Deviation.

Step-by-step explanation:

The lower case Greek letter 'sigma' is denoted by the symbol ( \sigma).

This symbol indicates the Population Standard Deviation of the data. Standard deviation means how much variation or dispersion is there in our data. Squaring of standard deviation gives us Variance which is denoted by the symbol \sigma ^{2} .

Formula for Population Standard deviation ( \sigma) is = \sqrt{\frac{\sum (x_i-\mu )^{2}}{N}} ,

                                where x_i = each value from our list of data

                                           \mu = Population mean of data

                                          N = Number of observations in our data

Standard deviation can never be negative and it is very much sensitive to outliers in our data.

8 0
3 years ago
Jose is 8 years older than his sister. The sum of their ages is 20. How old is Jose?<br> yrs. old
Mashutka [201]

Answer:

He is 20 years old.

Step-by-step explanation:

cuz 20 - 8 = 12(sisters age)

so if the sum of both their ages is 20 then, he is 20.

3 0
3 years ago
Rearrange the formula S = a/(a - r) for r.
vesna_86 [32]
S = a / (a - r)...multiply both sides by (a - r)
S(a - r) = a
Sa - Sr = a
Sa - a = Sr
(Sa - a) / S = r or it could be : (aS - a) / S = r
7 0
4 years ago
Read 2 more answers
Solve the following system of linear equations {2x-7y=10 {5x -6y=2
Sliva [168]

2x-7y=10 = \frac{2}{7}

5x -6y=2 = \frac{5}{6}

5 0
3 years ago
Other questions:
  • Find the area of the shaded region. Round to the nearest tenth if necessary.
    12·1 answer
  • Hi could i get some help with 0.00003 / 2 x 10^-5
    14·1 answer
  • [25 points] Help with proportions, I don't understand! 134 out of 205 families in "Chimgan" village keep cows, 142 keep sheep an
    9·1 answer
  • 10. A circle has an arc with measure 80° and length 887. What is the<br> diameter of the circle?
    13·1 answer
  • 1.F(x)=2x+6 find f(20) 2.find x when f(x)=20
    8·1 answer
  • Whats the ordered pair 14x-2y=78 and 2x-2y=6 using the substitution method
    10·1 answer
  • What does break-even mean in Maths Lit​
    8·2 answers
  • 5.<br> What are the slope and the y-intercept of the graph of the linear function shown on the grid?
    8·2 answers
  • Question: what would be the vertical intercept of the line and what would it represent? Help me please ill give brainliest
    14·1 answer
  • Plsssssssssssssssssssssssssssssssssssssssssssssssssssssssssssss
    7·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!