Answer:
The time required to melt the frost is 3.25 hours.
Explanation:
The time required to melt the frost dependes on the latent heat of the frost and the amount of heat it is transfered by convection to the air .
The heat transferred per unit area can be expressed as:

being hc the convective heat transfer coefficient (2 Wm^-2K^-1) and ΔT the difference of temperature (20-0=20 °C or K).

If we take 1 m^2 of ice, with 2 mm of thickness, we have this volume

The mass of the frost can be estimated as

Then, the amount of heat needed to melt this surface (1 m²) of frost is

The time needed to melt the frost can be calculated as

First, we need to calculate the principal quantum number n for this electron, using the equation:
E = (-13.60 eV) / (n x n)
where E is the energy that is used to bound the electron (here, E = - 0.544 eV).
- 0.544 eV = (-13.60 eV) / (n x n)
n x n = (- 13.60 eV) / (- 0.544 eV)
n x n = 25
n = 5
The orbital radius that is equal to the radius of a hydrogen atom is calculated using the equation:
r = 0.053 nm x n x n
r = 0.053 nm x 5 x 5
r = 0.053 nm x 25
r = 1.325 nm
1) 1 molecules
2) 2 oxygen atoms
3)2 moles of Al2O3 are formed
4)4:3
Answer:- 
Explanations:- The solution we have is a buffer solution and we know that a buffer solution resists a change in its pH if a strong acid or base is added to it.
Here, the buffer solution we have is of a weak base and it's conjugate acid. So, a strong acid(nitric acid) is added to this buffer then it reacts with the base present in the buffer so that the acid could be neutralized. This is called buffer action.
The net ionic equation is written as:

Note that
is a strong acid and nitrate ion is the spectator ion so it is not included in the net ionic equation.