Use PV =nRT. Rearrange it to n = PV/RT.
P = 202.6 kPa
V = 4.0L
R = 8.314 kPa*L/mol*K
T = 127 °C + 273 = 400 K
Plug it in and solve. I got 0.24 moles of H2.
Answer:
359 grams FeO
Explanation:
To find how many grams FeO are produced, you need to use the moles of Fe, convert it to moles of FeO (using the mole-to-mole ratio from the equation), then convert the moles of FeO to grams (using the molar mass from the periodic table).
2 Fe + O₂ --> 2 FeO
Molar Mass (FeO) = 55.845 g/mol + 16.00 g/mol
Molar Mass (FeO) = 71.845 g/mol
5.00 moles Fe 2 moles FeO 71.845 grams
---------------------- x ------------------------ x ---------------------- = 359 grams FeO
2 moles Fe 1 mole FeO
1. covalent bonds are strong
2. hydrogen bonds are weak
3. Ionic bonds are weak
Answer:
F. 2NO + 02 —> 2NO
H. 4NH3 + 502 —> 4NO + 6H20
Explanation:
The law of conservation of mass states that matter can neither be created nor destroyed during a chemical reaction but can be convert from one form to another.
2NO + 02 —> 2NO
From the above, the total number of N on the left balance the total number on the right i.e 2 atoms of N on both side of the equation.
The total number of O on the left balance the total number on the right i.e 2 atoms of O on both side of the equation. This is certified by the law of conservation of mass.
4NH3 + 502 —> 4NO + 6H20
From the above, the total number of N on the left balance the total number on the right i.e 4 atoms of N on both side of the equation.
The total number of O on the left balance the total number on the right i.e 10 atoms of O on both side of the equation.
The total number of H on the left balance the total number on the right i.e 12 atoms of O on both side of the equation.
This is certified by the law of conservation of mass.
The rest equation did not conform to the law of conservation of mass as the atoms on the left side did not balance those on the right side
Answer:
Electron-pair geometry: tetrahedral
Molecular geometry: trigonal pyramidal
Hybridization: sp³
sp³ - 4 p
Explanation:
There is some info missing. I think this is the original question.
<em>For NBr₃, What are its electron-pair and molecular geometries? What is the hybridization of the nitrogen atom? What orbitals on N and Br overlap to form bonds between these elements?</em>
<em>The N-Br bonds are formed by the overlap of the ___ hybrid orbitals on nitrogen with ___ orbitals on Br.</em>
<em />
Nitrogen is a central atom surrounded by 4 electron domains. According to VESPR, the corresponding electron-pair geometry is tetrahedral.
Of these 4 electron domains, 3 represent covalent bonds with Br and 1 lone pair. According to VESPR, the corresponding molecular geometry is trigonal pyramidal.
In the nitrogen atom, 1 s orbital and 3 p orbitals hybridize to form 4 sp³ orbitals for each of the electron domains.
The N-Br bonds are formed by the overlap of the sp³ hybrid orbitals on nitrogen with 4p orbitals on Br.