Explanation:
The chemical equation is as follows.

And, the given enthalpy is as follows.
;
= 102.5 kJ
Cl-Cl = 243 kJ/mol, O=O = 498 kJ/mol
Since, the bond enthalpy of Cl-Cl is not given so at first, we will calculate the value of Cl-Cl as follows.
102.5 = ![[(\frac{1}{2})x + 498] - [(2)(243)]](https://tex.z-dn.net/?f=%5B%28%5Cfrac%7B1%7D%7B2%7D%29x%20%2B%20498%5D%20-%20%5B%282%29%28243%29%5D)
102.5 = 
102.5 - 12 = 
x = 181 kJ
Now, total bond enthalpy of per mole of ClO is calculated as follows.

x = ![[(\frac{1}{2})181 + (\frac{1}{2})498] - 243](https://tex.z-dn.net/?f=%5B%28%5Cfrac%7B1%7D%7B2%7D%29181%20%2B%20%28%5Cfrac%7B1%7D%7B2%7D%29498%5D%20-%20243)
= 339.5 - 243
= 96.5 kJ
Thus, we can conclude that the value for the enthalpy of formation per mole of ClO(g) is 96.5 kJ.
Answer:
b) C = 0.50 J/(g°C)
Explanation:
∴ Q = 50 J
∴ m = 10.0 g
∴ ΔT = 35 - 25 = 10 °C
specific heat (C) :
⇒ C = Q / mΔT
⇒ C = 50 J / (10.0 g)(10 °C)
⇒ C = 0.50 J/(g°C)
Answer:
D)The sound quality for these waves cannot be compared.
Explanation:
I've done it on e2020
C is the answer I’m pretty sure