The loss or conservation of kinetic energy is the difference between an elastic and an inelastic collision. Kinetic energy is not preserved in an inelastic collision, and it will change forms into sound, heat, radiation, or another form. The kinetic energy in an elastic collision is preserved and does not change forms.
Answer:
Answer:
Speed of the wave in the string will be 3.2 m/sec
Explanation:
We have given frequency in the string fixed at both ends is 80 Hz
Distance between adjacent antipodes is 20 cm
We know that distance between two adjacent anti nodes is equal to half of the wavelength
So \frac{\lambda }{2}=20cm
2
λ
=20cm
\lambda =40cmλ=40cm
We have to find the speed of the wave in the string
Speed is equal to v=\lambda f=0.04\times 80=3.2m/secv=λf=0.04×80=3.2m/sec
So speed of the wave in the string will be 3.2 m/sec
Answer:
He should stand from the center of laser pointed on the wall at 1.3 m.
Explanation:
Given that,
Wave length = 650 nm
Distance =10 m
Double slit separation d = 5 μm
We need to find the position of fringe
Using formula of distance



Put the value into the formula


Hence, He should stand from the center of laser pointed on the wall at 1.3 m.
Answer:
Explanation:A covalent bond is formed when electrons are shared between non-metal atoms, and the positive nuclei are attracted towards the pair of negative bonded electrons. ... Hence, the hydrogen bond is weaker than ionic and covalent bonds. Example: Water molecules are held to each other by intermolecular forces of attraction.