All you can say about it is that it then vibrates perpendicular to the x-axis. But that could be up and down parallel to the y-axis, in and out parallel to the z-axis, or some of it in every possible direction perpendicular to the x-axis. We "polarize" the light when we want to pick out only one perpendicular direction and stop all the others.
Answer: option 1 : the electric potential will decrease with an increase in y
Explanation: The electric potential (V) is related to distance (in this case y) by the formulae below
V = kq/y
Where k = 1/4πε0
Where V = electric potential,
k = electric constant = 9×10^9,
y = distance of potential relative to a reference point, ε0 = permittivity of free space
q = magnitude of electronic charge = 1.609×10^-19 c
From the formulae, we can see that q and k are constants, only potential (V) and distance (y) are variables.
We have that
V = k/y
We see the potential(V) is inversely proportional to distance (y).
This implies that an increase in distance results to a decreasing potential and a decrease in distance results to an increase in potential.
This fact makes option 1 the correct answer
1 m = 1 000 000 ym
converted other way we can say that:
1 ym =

m
Now, since we have ym^2 which is ym*ym which means:
1 ym^2 =

m
we have 1,5 ym^2 which means that answer is:
Answer:
The relationship between acceleration and time relates to the velocity and how it changes throughout the movement of an object.