When an element has a low specific heat, this means that it requires less energy to increase the temperature of this element. Specific heat is measure in Joules/GramDegreeCelcius because it measures the amount of joules required to raise one gram of the element by one degree Celcius.
Answer:
Incomplete question
This is the complete question
For a magnetic field strength of 2 T, estimate the magnitude of the maximum force on a 1-mm-long segment of a single cylindrical nerve that has a diameter of 1.5 mm. Assume that the entire nerve carries a current due to an applied voltage of 100 mV (that of a typical action potential). The resistivity of the nerve is 0.6ohms meter
Explanation:
Given the magnetic field
B=2T
Lenght of rod is 1mm
L=1/1000=0.001m
Diameter of rod=1.5mm
d=1.5/1000=0.0015m
Radius is given as
r=d/2=0.0015/2
r=0.00075m
Area of the circle is πr²
A=π×0.00075²
A=1.77×10^-6m²
Given that the voltage applied is 100mV
V=0.1V
Given that resistive is 0.6 Ωm
We can calculate the resistance of the cylinder by using
R= ρl/A
R=0.6×0.001/1.77×10^-6
R=339.4Ω
Then the current can be calculated, using ohms law
V=iR
i=V/R
i=0.1/339.4
i=2.95×10^-4 A
i=29.5 mA
The force in a magnetic field of a wire is given as
B=μoI/2πR
Where
μo is a constant and its value is
μo=4π×10^-7 Tm/A
Then,
B=4π×10^-7×2.95×10^-4/(2π×0.00075)
B=8.43×10^-8 T
Then, the force is given as
F=iLB
Since B=2T
F=iL(2B)
F=2.95×10^-4×2×8.34×10^-8
F=4.97×10^-11N
Answer:Decreases
Explanation:
Given
Volume is held constant that is it is a isochoric process.
We know that
PV=nRT
as n,V& R are constant therefore only variables are
P & T
so 

As
is decreasing therefore Pressure must also decrease so that ratio remains constant.
Answer:
Option B
Explanation:
Gravitational force is a force that attracts two bodies (with a mass) towards each other. If an object has a higher mass, the gravitational pull will be greater.
According to Newton’s inverse square law:
<em>"The gravitational force is inversely proportional to the square of the distance between two bodies."</em>
About this question, the greater the distance between two gravitating bodies, the weaker is the gravitational force between them.
That ratio is called"efficiency". It doesn't need to be a percent.
It can just as well be a fraction or a decimal number.