1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
ivann1987 [24]
3 years ago
13

The tibia is a lower leg bone (shin bone) in a human. The maximum strain that the tibia can experience before fracturing corresp

onds to a 1 % change in length.
A. Young's modulus for bone is about Y = 1.4 x 10 N/m². The tibia (shin bone) of a human is 0.35 m long and has an average cross-sectional area of 2.9 cm. What is the effective spring constant of the tibia?
B. If a man weighs 750 N, how much is the tibia compressed if it supports half his weight?
C. What is the maximum force that can be applied to a tibia with a cross-sectional area, A = 2.90 cm?
Physics
1 answer:
IRISSAK [1]3 years ago
4 0

Answer:

a

   k    =  11600000 N/m

b

   \Delta  L  =  3.2323 *10^{-5} \ m

c

  F =  3750.28 \  N  

Explanation:

From the question we are told that

    The Young modulus is  E =  1.4 *10^{10} \  N/m^2

     The length is  L  =  0.35 \ m

      The  area is  2.9 \ cm^2  =  2.9 *10^{-4} \ m ^2

   

Generally the force acting on the tibia is mathematically represented as

       F =  \frac{E *  A  *  \Delta  L }{L}    derived from young modulus equation

Now this force can also be mathematically represented as

      F =  k *  \Delta  L    

So

     k    =  \frac{E *  A  }{L}

substituting values

     k    =  \frac{1.4 *10^{10} *  2.9 *10^{-4}  }{ 0.35}

     k    =  11600000 N/m

    Since the tibia support half the weight then the force experienced by the tibia is  

        F_k  =  \frac{750 }{2}  =  375 \  N

 From the above equation the extension (compression) is mathematically represented as

          \Delta  L  =  \frac{ F_k  *  L  }{ A *  E }        

substituting values

           \Delta  L  =  \frac{  375   *  0.35  }{ (2.9 *10^{-4}) *   1.4*10^{10} }

           \Delta  L  =  3.2323 *10^{-5} \ m

From the above equation the maximum force is  

        F =  \frac{1.4*10^{10} *  (2.9*10^{-4})  *  3.233*10^{-5} }{ 0.35}  

         F =  3750.28 \  N  

You might be interested in
En una competencia automovilística, Germán tarda 38 s en dar una vuelta a la
attashe74 [19]

Explanation:

Análisis estadístico de resultados de ensayos de pavimentos asfálticos según la ... T38 Caracterizacin dinámica de suelos granulares ... Se retira y se da vuelta la probeta

3 0
3 years ago
What force keeps the outside of a bicycle wheel from flying off?
4vir4ik [10]

Answer:

Centripetal force

Explanation:

8 0
2 years ago
An automobile moves on a level horizontal road in a circle of radius 30 m. The coefficient of
blondinia [14]

Answer:

v = 12.12 m/s      

Explanation:

It is given that,

Radius of circle, r = 30 m

The coefficient friction between tires and road is 0.5,

The centripetal force is balanced by the force of friction such that,

v = 12.12 m/s

So, the maximum speed with which this car can round this curve is 12.12 m/s. Hence, this is the required solution.

5 0
3 years ago
A ray of light passes from air into a block of clear plastic. How does the angle of incidence in the air compare to the angle of
andre [41]

Answer:

The angle of incidence is greater than the angle of refraction

Explanation:

Refraction occurs when a light wave passes through the boundary between two mediums.

When a ray of light is refracted, it changes speed and direction, according to Snell's Law:

n_1 sin \theta_1 = n_2 sin \theta_2

where :

n_1 is the index of refraction of the 1st medium

n_2 is the index of refraction of the 2nd medium

\theta_1 is the angle of incidence (the angle between the incident ray and the normal to the boundary)

\theta_2 is the angle of refraction (the angle between the refracted ray and the normal to the boundary)

In this problem, we have a ray of light passing from air into clear plastic. We have:

n_1=1.00 (index of refraction of air)

n_2=1.50 approx. (index of refraction in clear plastic)

Snell's Law can be rewritten as

sin \theta_2 =\frac{n_1}{n_2}sin \theta_1

And since n_2>n_1, we have

\frac{n_1}{n_2}

And so

\theta_2

Which means that

The angle of incidence is greater than the angle of refraction

6 0
3 years ago
Which velocity-time graph matches the position-time graph?
skelet666 [1.2K]

The answer is Graph C. To explain, this is because as we look at the position vs time graph, we see that after the first second, it was 30 meters from the start. That would mean that it took 1 second to get to 30 meters. That is shown in Graph c

7 0
3 years ago
Read 2 more answers
Other questions:
  • Ninety-nine percent of the radiation from the sun consists of visible light, ultraviolet light.true or false?
    13·1 answer
  • 3. What average net force is required to stop a 7 kg shopping cart in 2 s if it's initially
    10·1 answer
  • The earth has a net electric charge that causes a field at points near its surface equal to 150 N/C and directed in toward the c
    13·1 answer
  • Who yall think gonna win Seahawks or Vikings? Seahawks all the way
    14·2 answers
  • Find the perimeter of the rectangle if each block represents one foot(show your calculation)
    9·1 answer
  • When a rattlesnake strikes, its head accelerates from rest to a speed of 28 m/s in 0.65 seconds. Assume for simplicity that the
    9·1 answer
  • ANSWER ASAP AND WILL GIVE BRAINLIEST AND POINTS
    13·2 answers
  • A person's speed around the Earth is faster at the poles than it is at the equator.
    11·1 answer
  • According to the law of conservation of energy, which statement must be
    13·1 answer
  • Naruto is running towards Zetsu. Starting from rest, he accelerates to a velocity of 15
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!