1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
ivann1987 [24]
3 years ago
13

The tibia is a lower leg bone (shin bone) in a human. The maximum strain that the tibia can experience before fracturing corresp

onds to a 1 % change in length.
A. Young's modulus for bone is about Y = 1.4 x 10 N/m². The tibia (shin bone) of a human is 0.35 m long and has an average cross-sectional area of 2.9 cm. What is the effective spring constant of the tibia?
B. If a man weighs 750 N, how much is the tibia compressed if it supports half his weight?
C. What is the maximum force that can be applied to a tibia with a cross-sectional area, A = 2.90 cm?
Physics
1 answer:
IRISSAK [1]3 years ago
4 0

Answer:

a

   k    =  11600000 N/m

b

   \Delta  L  =  3.2323 *10^{-5} \ m

c

  F =  3750.28 \  N  

Explanation:

From the question we are told that

    The Young modulus is  E =  1.4 *10^{10} \  N/m^2

     The length is  L  =  0.35 \ m

      The  area is  2.9 \ cm^2  =  2.9 *10^{-4} \ m ^2

   

Generally the force acting on the tibia is mathematically represented as

       F =  \frac{E *  A  *  \Delta  L }{L}    derived from young modulus equation

Now this force can also be mathematically represented as

      F =  k *  \Delta  L    

So

     k    =  \frac{E *  A  }{L}

substituting values

     k    =  \frac{1.4 *10^{10} *  2.9 *10^{-4}  }{ 0.35}

     k    =  11600000 N/m

    Since the tibia support half the weight then the force experienced by the tibia is  

        F_k  =  \frac{750 }{2}  =  375 \  N

 From the above equation the extension (compression) is mathematically represented as

          \Delta  L  =  \frac{ F_k  *  L  }{ A *  E }        

substituting values

           \Delta  L  =  \frac{  375   *  0.35  }{ (2.9 *10^{-4}) *   1.4*10^{10} }

           \Delta  L  =  3.2323 *10^{-5} \ m

From the above equation the maximum force is  

        F =  \frac{1.4*10^{10} *  (2.9*10^{-4})  *  3.233*10^{-5} }{ 0.35}  

         F =  3750.28 \  N  

You might be interested in
What three things do cells / organisms have to do to maintain homeostasis? ____ from food, get rid of ____, and _____(mitosis/me
user100 [1]
1) use energy from food
2) get rid of wastes
3) maintain
5 0
3 years ago
The psychologist known for latent learning and cognitive maps is _________. A. Robert Rescorla B. Edward Tolman C. William James
Lubov Fominskaja [6]

Answer:

B

Explanation:

B. Edward Tolman

4 0
3 years ago
Read 2 more answers
A 240 g toy car is placed on a narrow 60-cm-diameter track with wheel grooves that keep the car going in a circle. The 1.0 kg tr
lesya [120]

Answer:

The track's angular velocity is W2 = 4.15 in rpm

Explanation:

Momentum angular can be find

I = m*r^2

P = I*W

So to use the conservation

P1 + P2 = 0

I1*W1 + I2*W2 = 0

Solve to w2 to find the angular velocity

0.240kg*0.30m^2*0.79m/s=-1kg*0.30m^2*W2

W2 = 0.435 rad/s

W2 = 4.15 rpm

8 0
3 years ago
Please help me important will give brainliest
irinina [24]
Pretty sure it’s C. all the others are speeding up. acceleration means gradually (over time) getting faster. So it’s C.
7 0
3 years ago
A rough estimate of the radius of a nucleus is provided by the formula r 5 kA1/3, where k is approximately 1.3 × 10213 cm and A
Sphinxa [80]

Answer:

Density of 127 I = \rm 1.79\times 10^{14}\ g/cm^3.

Also, \rm Density\ of\ ^{127}I=3.63\times 10^{13}\times Density\ of\ the\ solid\ iodine.

Explanation:

Given, the radius of a nucleus is given as

\rm r=kA^{1/3}.

where,

  • \rm k = 1.3\times 10^{-13} cm.
  • A is the mass number of the nucleus.

The density of the nucleus is defined as the mass of the nucleus M per unit volume V.

\rm \rho = \dfrac{M}{V}=\dfrac{M}{\dfrac 43 \pi r^3}=\dfrac{M}{\dfrac 43 \pi (kA^{1/3})^3}=\dfrac{M}{\dfrac 43 \pi k^3A}.

For the nucleus 127 I,

Mass, M = \rm 2.1\times 10^{-22}\ g.

Mass number, A = 127.

Therefore, the density of the 127 I nucleus is given by

\rm \rho = \dfrac{2.1\times 10^{-22}\ g}{\dfrac 43 \times \pi \times (1.3\times 10^{-13})^3\times 127}=1.79\times 10^{14}\ g/cm^3.

On comparing with the density of the solid iodine,

\rm \dfrac{Density\ of\ ^{127}I}{Density\ of\ the\ solid\ iodine}=\dfrac{1.79\times 10^{14}\ g/cm^3}{4.93\ g/cm^3}=3.63\times 10^{13}.\\\\\Rightarrow Density\ of\ ^{127}I=3.63\times 10^{13}\times Density\ of\ the\ solid\ iodine.

7 0
3 years ago
Other questions:
  • A merry-go-round with a a radius of R = 1.63 m and moment of inertia I = 196 kg-m2 is spinning with an initial angular speed of
    5·1 answer
  • Arrange the movement/act/organization in ascending order of occurrence. Energy Supply and Environmental Coordination Act Nature
    13·1 answer
  • Three-dimensional ____ programs allow designers to rotate designs of 3-d objects to view them from any angle.
    5·1 answer
  • Alice and Tom dive from an overhang into the lake below. Tom simply drops straight down from the edge, but Alice takes a running
    6·1 answer
  • If the current through a resistor is 12 A and the voltage drop is 12 V, what is the power absorbed by the resistor? Answer to th
    11·1 answer
  • Which element has the greatest number of valence electrons?
    6·1 answer
  • Which of the following occurs when a liquid’s thermal energy is increased?
    15·1 answer
  • Two straight wires carry current of 5A opposite direction separated by a distance of 30cm. What is the magnitude of magnetic fie
    11·1 answer
  • Identify which objects will accelerate to the left, which will accelerate to the right,and those that will not accelerate. Optio
    15·1 answer
  • A box of mass 3.6 kg is lifted 5.4 m above the
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!