Answer:
(A) Consists of a small number of tiny particles that are far apart- relative in their size.
Explanation:
An <em>ideal gas</em> is defined as a simplification of a real gas, with punctual particles, in which all collisions are elastic, with random displacements and with no attractive force between them.
The assumption of the particles being punctual make clear that they do not have size at all. So if they were far apart-relative in their size, they can not collide each other, that is why assumption (B) can not be possible (<u><em>for that particular case</em></u>).
It is clear that (A) is not an assumption for an ideal gas, because do not fit in any of its properties.
Elastic collision: It is a case in which the energy is conserved (Kinetic Energy).
Kinetic Energy: It is the energy that will have an object as a consequence of its movement.
Water vapor and carbon dioxide
Answer: the direction of the magnetic force on the electron will be moving out of the screen, perpendicular to the magnetic field.
Explanation:
The magnetic force F on a moving electron at right angle to a magnetic field is given by the formula:
F = BqVSinØ
If an electron moves in the plane of this screen toward the top of the screen. A magnetic field is also in the plane of the screen and directed toward the right. Then, the direction of the magnetic force on the electron will be perpendicular to the magnetic field
According to the Fleming's left - hand rule, the direction of the magnetic force on the electron will be moving out of the plane of the screen.
Answer/Explanation:
The weight of an object is defined as the force that is exerted due to the gravitational force.
Mathematically, it can be written as :
W = m g
Where
m is the mass of the object
g is the acceleration due to gravity
Also,
We know that the value of g varies with respect to the location. At the equator, the value of g is less as compared to the poles.
The feature of an object that affects its weight are :
Mass of the object
Location of the object
How much force Earth exerts on the object
The impact speed will be
v^2 = 2*9.8*1.3
v^2 = 25.48
v= 5.04 m/s