The mass of a particle is 2.2x10⁻¹⁵ kg
Consider smoke particles as an ideal gas
The translational RMS speed of the smoke particles is 2.45x10⁻³ m/s.
<em>v= √3kT/m</em>
<em>where k= 1.38x10⁻²³J/K, T is 288K, and m is the mass of the smoke particle</em>
<em>2.45x10⁻³ = √3x1.38x10⁻²³x288/m</em>
<em>m= 2.2x10⁻¹⁵ kg</em>
Therefore, the mass of a particle is 2.2x10⁻¹⁵ kg.
To learn more about the translational root mean square speed of gases, visit brainly.com/question/6853705
#SPJ4
Answer: d. thunderstorms
The option <span>blizzards can be excluded as it is clearly not related to the evaporation. Floods can happen if the condensation rate high, not evaporation. Sometimes the cloud that carries water is just blown up by the wind so the evaporation does not happen in that place.
Thunderstorms happen more in summer because the rate of evaporation and condensation is increased.</span>
Answer:
Amplitude is a measure of the size of sound waves. It depends on the amount of energy that started the waves. Greater amplitude waves have more energy and greater intensity, so they sound louder. The same amount of energy is spread over a greater area, so the intensity and loudness of the sound is less.
Explanation:
Answer: E/4 ( one - fourth of it electric field)
Explanation:
The electric field of a point charge is given below as
E =kq/r²
E = electric field,
K = electric constant
q = magnitude of electric charge
r = distance between point charge and electric field.
It can be seen that only E and r are the only variable here and also, E is inversely proportional to r²
Which implies that
E = k/r² , k = E × r²
E1 ×(r1)² = E2 × (r2)²
Let E1 = E, r1 =1, r2 = 2 and E2 =?
Let us substitute the parameters
E × 1 = E2 × 2²
E × 1 = E2 × 4
E = E2 × 4
E2 = E/4
Which implies that the electric field at the second distance (r =4) is one fourth of the initial electric field.
Answer:
What wave is a sound wave?
For a sound wave traveling through air, the vibrations of the particles are best described as longitudinal. Longitudinal waves are waves in which the motion of the individual particles of the medium is in a direction that is parallel to the direction of energy transport.
Explanation: