The tension in the first and second rope are; 147 Newton and 98 Newton respectively.
Given the data in the question
- Mass of first block;

- Mass of second block,

- Tension on first rope;

- Tension on second rope;
To find the Tension in each of the ropes, we make use of the equation from Newton's Second Laws of Motion:

Where F is the force, m is the mass of the object and a is the acceleration ( In this case the block is under gravity. Hence ''a" becomes acceleration due to gravity
)
For the First Rope
Total mass hanging on it; 
So Tension of the rope;

Therefore, the tension in the first rope is 147 Newton
For the Second Rope
Since only the block of mass 10kg is hang from the second, the tension in the second rope will be;

Therefore, the tension in the second rope is 98 Newton
Learn More, brainly.com/question/18288215
Answer: MR²
is the the moment of inertia of a hoop of radius R and mass M with respect to an axis perpendicular to the hoop and passing through its center
Explanation:
Since in the hoop , all mass elements are situated at the same distance from the centre , the following expression for the moment of inertia can be written as follows.
I = ∫ r² dm
= R²∫ dm
MR²
where M is total mass and R is radius of the hoop .
Answer:
a)= technology is any appliances which makes our work very fast without much manual effort.It is used to make our life simple and easy.
The sound was repeated because of the phenomenon of echo. The speed of sound in the metal is 800 m/s.
Echo results from the reflection of sound waves. The reason why a sound may be heard twice owes to the phenomenon of reflection which leads to echo.
To determine the speed of sound in the metal;
Length of metal = 1000 m
Time taken between the two sounds = 2.5 s
Using the formula;
V = 2d/t
V = 2(1000)/2.5
V = 800 m/s