Answer:
neither
geometric progression
arithmetic progression
Step-by-step explanation:
Given:
sequences: 


To find: which of the given sequence forms arithmetic progression, geometric progression or neither of them
Solution:
A sequence forms an arithmetic progression if difference between terms remain same.
A sequence forms a geometric progression if ratio of the consecutive terms is same.
For
:

Hence,the given sequence does not form an arithmetic progression.

Hence,the given sequence does not form a geometric progression.
So,
is neither an arithmetic progression nor a geometric progression.
For
:

As ratio of the consecutive terms is same, the sequence forms a geometric progression.
For
:

As the difference between the consecutive terms is the same, the sequence forms an arithmetic progression.
Given:
Kim picked 250 pounds of pears yesterday and 287 pounds of pears today.
To find:
The percentage increase of amount of pears picked by Kim.
Solution:
We know that,





Therefore, the percentage increase of amount of pears picked by Kim is 14.8%.
Answer:
(0,0) (1,2) (2,4) (3,6)
Step-by-step explanation:
They all share the same slope which is 1/2
The correct answer is:
[A]: "

" .
______________________________________________________<u>Note</u>: "3/4" = "6/8" = "15/20" .
______________________________________________________
Start by writing the system down, I will use
to represent 

Substitute the fact that
into the first equation to get,

Simplify into a quadratic form (
),

Now you can use Vieta's rule which states that any quadratic equation can be written in the following form,

which then must factor into

And the solutions will be
.
Clearly for small coefficients like ours
, this is very easy to figure out. To get 5 and 6 we simply say that
.
This fits the definition as
and
.
So as mentioned, solutions will equal to
but these are just x-values in the solution pairs of a form
.
To get y-values we must substitute 3 for x in the original equation and then also 2 for x in the original equation. Luckily we already know that substituting either of the two numbers yields a zero.
So the solution pairs are
and
.
Hope this helps :)