Answer:
The answer to your question is 41.6 g of AgCl
Explanation:
Data
mass of NH₄Cl = 15.5 g
mass of AgNO₃ = excess
mass of AgCl = 35.5 g
theoretical yield = ?
Process
1.- Write the balanced chemical reaction.
NH₄Cl + AgNO₃ ⇒ AgCl + NH₄NO₃
2.- Calculate the molar mass of NH₄Cl and AgCl
NH₄Cl = 14 + 4 + 35.5 = 53.5 g
AgCl = 108 + 35.5 = 143.5 g
3.- Calculate the theoretical yield
53.5 g of NH₄Cl -------------------- 143.5 g of AgCl
15.5 g of NH₄Cl ------------------- x
x = (15.5 x 143.5) / 53.5
x = 2224.25 / 53.5
x = 41.6 g of AgCl
<span>If a reaction is reversible, then it will attain the phase of Equilibrium and at that phase, the Amount of Reactants and Products would be: Equal
Hope this helps!</span>
Answer: The Kelvin scale is related to the Celsius scale. The difference between the freezing and boiling points of water is 100 degrees in each, so that the kelvin has the same magnitude as the degree Celsius.
Explanation:
Celsius is, or relates to, the Celsius temperature scale (previously known as the centigrade scale). The degree Celsius (symbol: °C) can refer to a specific temperature on the Celsius scale as well as serve as a unit increment to indicate a temperature interval(a difference between two temperatures or an uncertainty). “Celsius” is named after the Swedish astronomer Anders Celsius (1701-1744), who developed a similar temperature scale two years before his death.
K = °C + 273.15
°C = K − 273.15
Until 1954, 0 °C on the Celsius scale was defined as the melting point of ice and 100 °C was defined as the boiling point of water under a pressure of one standard atmosphere; this close equivalence is taught in schools today. However, the unit “degree Celsius” and the Celsius scale are currently, by international agreement, defined by two different points: absolute zero, and the triple point of specially prepared water. This definition also precisely relates the Celsius scale to the Kelvin scale, which is the SI base unit of temperature (symbol: K). Absolute zero—the temperature at which nothing could be colder and no heat energy remains in a substance—is defined as being precisely 0 K and −273.15 °C. The triple point of water is defined as being precisely 273.16 K and 0.01 °C.
An anchoring phenomenon anchors all of the learning within a unit. So, it is a unit level event that the classroom is trying to make sense of as they engage in a series of lessons.
Since the questions the students ask about the anchor drive the learning within the unit, the anchor should be complex and require an understanding of several big science ideas to explain.
At strategic moments, the class revisits the anchoring phenomenon to review their initial questions to see which they have answered, which they are making progress on, and what new questions they may have to help us continue learning about the phenomenon.
Throughout the unit, the classroom and each student should be given opportunities to share their thinking and how it relates to the anchoring phenomenon.
YOU SHOULD PUT IT IN YOUR OWN WORDS THOUGH <3
Answer:
Explanation:
Strontium chlorate appears as a moist solid or semi-solid slurry of white crystals. May explode under exposure to heat or fire. Used in pyrotechnics
strontium chlorate | Sr(ClO3)2 - PubChem.
Description: Strontium chlorate appears as a ...
Synonyms: STRONTIUM CHLORATE7791-10-...
Molecular Formula: Sr(ClO3)2 or Cl2O6Sr