The answer is temperature
Mass of methanol (CH3OH) = 1.922 g
Change in Temperature (t) = 4.20°C
Heat capacity of the bomb plus water = 10.4 KJ/oC
The heat absorbed by the bomb and water is equal to the product of the heat capacity and the temperature change.
Let’s assume that no heat is lost to the surroundings. First, let’s calculate the heat changes in the calorimeter. This is calculated using the formula shown below:
qcal = Ccalt
Where, qcal = heat of reaction
Ccal = heat capacity of calorimeter
t = change in temperature of the sample
Now, let’s calculate qcal:
qcal = (10.4 kJ/°C)(4.20°C)
= 43.68 kJ
Always qsys = qcal + qrxn = 0,
qrxn = -43.68 kJ
The heat change of the reaction is - 43.68 kJ which is the heat released by the combustion of 1.922 g of CH3OH. Therefore, the conversion factor is:
Decomposition,because 1 breaks down into 2
It would be endothermic because the log is in the system.
Why does the chemical reaction seen here obey the law of conservation of matter?
<u><em>Answer:</em></u>
- Because there are the same number of atoms of each element shown on both sides
<u><em>Explanation</em></u>
- As in chemical reactions, atoms bonds are break and new bonds are formed. As new substance are formed but overall they have same elements, no new elements come from outside or go to outside. In other words , rearrangement of atoms take place but number of atoms remained same.
NaOH + HCl -----> NaCl + H2O
- As in above reaction there are the same number of atoms of each element shown on both sides .