<span>Forward & falling. Hope this helps!</span>
Answer:
1.1 × 10²⁴ atoms Mg
General Formulas and Concepts:
<u>Atomic Structure</u>
- Moles
- Avogadro's Number - 6.022 × 10²³ atoms, molecules, formula units, etc.
<u>Stoichiometry</u>
- Using Dimensional Analysis
Explanation:
<u>Step 1: Define</u>
<em>Identify</em>
[Given] 1.8 mol Mg
[Solve] atoms Mg
<u>Step 2: Identify Conversions</u>
Avogadro's Number
<u>Step 3: Convert</u>
- [DA] Set up:

- [DA] Multiply [Cancel out units]:

<u>Step 4: Check</u>
<em>Follow sig fig rules and round. We are given 2 sig figs.</em>
1.08396 × 10²⁴ atoms Mg ≈ 1.1 × 10²⁴ atoms Mg
Answer:
ΔH°r = -1562 kJ
Explanation:
Let's consider the following combustion.
C₂H₆(g) + 7/2 O₂(g) ⇒ 2 CO₂(g) + 3 H₂O(l)
We can calculate the standard heat of reaction (ΔH°r) using the following expression:
ΔH°r = ∑np × ΔH°f(p) - ∑nr × ΔH°f(r)
where,
ni are the moles of reactants and products
ΔH°f(i) are the standard heats of formation of reactants and products
The standard heat of formation of simple substances in their most stable state is zero. That means that ΔH°f(O₂(g)) = 0
ΔH°r = ∑np × ΔH°f(p) - ∑nr × ΔH°f(r)
ΔH°r = [2 mol × ΔH°f(CO₂) + 3 mol × ΔH°f(H₂O)] - [1 mol × ΔH°f(C₂H₆) + 7/2 mol × ΔH°f(O₂)]
ΔH°r = [2 mol × (-394.0 kJ/mol) + 3 mol × (-286.0 kJ/mol)] - [1 mol × (-84.00 kJ/mol) + 7/2 mol × 0]
ΔH°r = -1562 kJ
Answer: $109.5
Multiply $146 (original price) by 0.75 (the percentage) and there’s your answer!