1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
katen-ka-za [31]
3 years ago
11

Learning Goal: To apply the law of conservation of energy to an object launched upward in the gravitational field of the earth.

In the absence of nonconservative forces such as friction and air resistance, the total mechanical energy in a closed system is conserved. This is one particular case of the law of conservation of energy. In this problem, you will apply the law of conservation of energy to different objects launched from the earth. The energy transformations that take place involve the object's kinetic energy K=(1/2)mv2 and its gravitational potential energy U=mgh. The law of conservation of energy for such cases implies that the sum of the object's kinetic energy and potential energy does not change with time. This idea can be expressed by the equation Ki+Ui=Kf+Uf , where "i" denotes the "initial" moment and "f" denotes the "final" moment. Since any two moments will work, the choice of the moments to consider is, technically, up to you. That choice, though, is usually suggested by the question posed in the problem. Using conservation of energy, find the maximum height h_max to which the object will rise
Physics
1 answer:
marishachu [46]3 years ago
5 0

Answer:

h=\frac{1}{2}\frac{v^2}{g}

Explanation:

Let's assume that an object is launched straight upward in a gravitational field. Its initial kinetic energy is given by

K=\frac{1}{2}mv^2 (1)

where m is the mass and v is the initial speed.

As the object goes higher, its kinetic energy decreases and it is converted into gravitational potential energy, since the total mechanical energy (sum of kinetic and potential energy) must remain constant:

E=K+U=const.

At the highest point of the trajectory, the speed of the object is zero (v=0), so the kinetic energy is also zero (K=0), which means that all the kinetic energy has been converted into potential energy:

U=mgh (2)

where g is the gravitational acceleration and h is the maximum height of the object.

Due to conservation of energy, we can write that (1) and (2) are equal, so:

\frac{1}{2}mv^2=mgh

from which we can derive an expression for the maximum height reached by the object

h=\frac{1}{2}\frac{v^2}{g}

You might be interested in
The eyepiece of a light microscope has a magnification level of 10x. If you were looking at a paramecium under the lowest-power
tester [92]

Answer:

The total magnification will be 40x.

Explanation:

As we know if the magnification of the eyepiece of a microscope be m_{e} and that of the objective be m_{o}, then the total magnification is given by

m = m_{e} \times m_{o}

Given, m_{e} = 10x and m_{o}  = 4x

Therefore total magnification is m = 10 \times 4 = 40x

4 0
3 years ago
If you drop an object, it accelerates downward at 9.8 m/s2 (in the absence of air resistance). If, instead, you throw it downwar
Korvikt [17]

If you drop an object, it accelerates downward at 9.8 m/s2 (in the absence of air resistance). If instead, you throw it downward, its downward acceleration after release is 9.8 m/s2.

Acceleration is the rate at which an object's velocity with respect to time changes. They are vector quantities and accelerations. The direction of the net force acting on an object determines the direction of its acceleration. Uniform acceleration, non-uniform acceleration, and average acceleration are the three different forms of accelerated motions.

A free-falling object experiences a downward acceleration of 9.8 m/s/s (on Earth). This specific designation is given to the numerical value for an object in free fall because it is such an essential value. The longer an object is in free fall, the faster it descends toward the ground due to gravity. In actuality, an object's velocity rises by 9.8 m/s2, so it reaches 9.8 m/s by the time it begins to fall.

To know more about acceleration refer to: brainly.com/question/14468548

#SPJ4

4 0
2 years ago
A boy jogs 250 meters in 110s what is the average speed
Artyom0805 [142]
The rule to get the average speed is as follows:
average speed = average distance / average time

We are given that:
distance = 250 m
time = 110 sec

Substitute with the givens in the above equation to get the average speed as follows:
average speed = 250/110 = 25/11 meters/sec
3 0
3 years ago
A 12-V battery is connected to an air-filled capacitor that consists of two parallel plates,
zloy xaker [14]

Answer:

E = 4000 V / m

U = 1.92*10^-18 J

C' = 4.71 pF

1.2 times greater with di-electric

Explanation:

Given:-

- The potential difference between plates, V = 12 V

- The area of each plate, A = 7.6 cm^2

- The separation between plates, d = 0.3 cm

- The charge of the proton. q = 1.6*10^-19 C

- The initial velocity of proton, vi = 0 m/s

Solution:-

- The electric field ( E ) between the parallel plates of the air-filled capacitor is determined from the applied potential difference by the battery on the two ends of the plates.

- The separation ( d ) between the two plates allows the charge to be stored and the Electric field between two charged plates would be:

                          E = V / d

                          E = 12 / 0.003

                          E = 4,000 V/m ... Answer

- The amount of electrostatic potential energy stored between the two plates is ( U ) defined by:

                         U = q*E*d

                         U = (1.6 x10^-19)*(4000)*(0.003)

                         U = 1.92*10^-18 J  ... Answer

- The electrostatic energy stored between plates is ( U ) when the proton moves from the positively charges plate to negative charged plate the energy is stored within the proton.

- A slab of di-electric material ( Teflon ) is placed between the two plates with thickness equal to the separation ( d ) and Area similar to the area of the plate ( A ).

- The capacitance of the charged plates would be ( C ):

                        C = k*ε*A / d

Where,

            k: the di-electric constant of material = 2.1

            ε: permittivity of free space = 8.85 × 10^-12

- The new capacitance ( C' ) is:

                      C' = 2.1*(8.85 × 10^-12) *( 7.6 / 100^2 ) / 0.003

                      C' = 4.71 pF

- The new total energy stored in the capacitor is defined as follows:

                     U' = 0.5*C'*V^2

                     U' = 0.5*(4.71*10^-12)*(12)^2

                     U' = 3.391 * 10^-10 J

- The increase in potential energy stored is by the amount of increase in capacitance due to di-electric material ( Teflon ). The di-electric constant "k" causes an increase in the potential energy stored before and after the insertion.

- Hence, the new potential energy ( U' ) is " k = 2.1 " times the potential energy stored in a capacitor without the di-electric.

                     

4 0
3 years ago
1. You push a deak across the room. A force was applied. The object moves as a result of a force.​
FinnZ [79.3K]

Answer:

what is the question?

Explanation:

I'm not sure if this was a question because you gave the answer lol

6 0
3 years ago
Other questions:
  • David is driving a steady 30 m/s when he passes Tina, who is sitting in her car at rest. Tina begins to accelerate at a steady 2
    15·1 answer
  • A volleyball player hit he ball with a mass of .25 kg. the average acceleration of the ball is 15.5 m/s^2. how much force did th
    15·2 answers
  • A thief is trying to escape from a parking garage after completing a robbery, and the thief's car is speeding (v = 13 m/s) towar
    13·1 answer
  • Why do you have to take mass into consideration when doing the egg drop
    12·1 answer
  • We can make Helium into liquid at 4 K, what is this temperature in Fahrenheit scale?
    12·1 answer
  • Si tenemos tres cubos del mismo tamaño (hierro, madera e icopor). ¿Qué diferencias puede encontrar entre ellos?
    6·1 answer
  • What is the charge of an ion if it has 4 protons and 6 electrons?
    7·2 answers
  • How does an electric motor use magnetic force to produce motion?
    6·2 answers
  • A 2 kg object being pulled across the floor with a speed of 10 m/sec is suddenly
    12·1 answer
  • A transverse wave on a string is described by the wave function
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!