Solid substances have molecules held tightly and close together
Liquid substances have molecules moving loosely
Gaseous molecules are moving completely freely
As moleclues get further apart, i.e. As a substance changes state from solid to liquid to gas, molecules gain kinetic energy and vibrate/move more. This means they gain heat energy (the averge energy a substance has) so the temperature increases
Substances exist in different states at different temperatures and different substances will exist in different states at the same temperature. This is to do with the forces between molecules and how much heat (energy) is required to break them
The chloroplast of the cell is most likely damaged if the plant cell is no longer capable of capturing energy from sunlight and converting it into chemical energy.
The chloroplast is the structure inside the leaf cell that is known for capturing light energy from the sun.
This light energy is then used to make food that has chemical energy. If a plant cell has a damaged chloroplast or the chloroplast is removed, then it will no longer be able to trap the light energy. As a result, the process of photosynthesis will not occur in the plant cell. The plant cell will not be able to make the chemical energy required for functioning.
To learn more about chloroplast, click here:
brainly.com/question/1741612
#SPJ4
-- Since it's a cube, its length, width, and height are all the same 4 cm .
-- Its volume is (length x width x height) = 64 cm³ .
-- Density = (mass) / (volume)
= (176 g) / (64 cm³)
= 2.75 gm/cm³ .
The kinetic energy K given to the helium nucleus is equal to its potential energy, which is

where q=2e is the charge of the helium nucleus, and

is the potential difference applied to it.
Since we know the kinetic energy, we have

and from this we can find the potential difference:
By definition, acceleration is the change in velocity per change of time. As time passes by, the time increases in value. So, when the acceleration is decreasing while the time is increasing, then that means that the change of velocity is also decreasing with time. So, optimally, the initial velocity and the velocity at any time are very relatively close to each other,