Answer: The acceleration that is directed radially towards the center of the circle having a magnitude equal to the square of the speed of the body along the curve is divided by the total distance from the center of the circle to the moving body.
Explanation:
Yw and mark me brainiest
I would say that there shouldn't be any calls on a plane while in-flight because you never know what someone is calling for. It can lead to a bad situation like 9/11 or any form of terrorism.
Answer:
To test your hydraulic skills, your Boss has requested you calculate the difference in water surface elevation between two reservoirs that are connected.
Explanation:
Answer:
The pressure on the ground is about 9779.5 Pascal.
The pressure can be reduced by distributing the weight over a larger area using, for example, a thin plate with an area larger than the circular area of the barrel's bottom side. See more details further below.
Explanation:
Start with the formula for pressure
(pressure P) = (Force F) / (Area A)
In order to determine the pressure the barrel exerts on the floor area, we need the calculate the its weight first

where m is the mass of the barrel and g the gravitational acceleration. We can estimate this mass using the volume of a cylinder with radius 30 cm and height 1m, the density of the water, and the assumption that the container mass is negligible:

The density of water is 997 kg/m^3, so the mass of the barrel is:

and so the weight is

and so the pressure is

This answers the first part of the question.
The second part of the question asks for ways to reduce the above pressure without changing the amount of water. Since the pressure is directly proportional to the weight (determined by the water) and indirectly proportional to the area, changing the area offers itself here. Specifically, we could insert a thin plate (of negligible additional weight) to spread the weight of the barrel over a larger area. Alternatively, the barrel could be reshaped (if this is allowed) into one with a larger diameter (and smaller height), which would achieve a reduction of the pressure.
I = MR^2
The Attempt at a Solution:::
I total = (3M)(0)^2 + (2M)(L/2)^2 + (M)(L)^2
I total = 3ML^2/2
It says the answer is 3ML^2/4 though.
⛔⛔⛔⛔⛔⛔⛔⛔⛔⛔⛔⛔⛔⛔⛔⛔⛔
mark it as brainliest.... ✌✌✌