Answer: 0.5N
Explanation:
Gravitational force is calculated using the formula :
F = Gm1m2/r^2
Where G is the gravitational constant (6.67 × 10^-11)
At a distance 'r' of 2metres apart:
Mass of objects are m1 and m2
Gravitational force 'F1' = 2N
Inputting values into the formula :
2 = Gm1m2 / 2^2 - - - - - (1)
At a distance 'r' of 4meters apart:
Mass of objects are m1 and m2
Gravitational force 'F2' = y
Inputting values
F2 = Gm1m2 / 4^2 - - - - - (2)
Dividing equations 1 and 2
2 = Gm1m2 / 2^2 ÷ F2 = Gm1m2 / 4^2
2 / F2 = (Gm1m2 / 4) / (Gm1m2 / 16)
2 / F2 = (Gm1m2 / 4) × (16 / Gm1m2)
2/F2 = 16 / 4
Cross multiply
2 × 4 = 16 × F2
8 = 16F2
F2 = 8/16
F2 = 0.5N
Answer:
B. It is directly proportional to the source charge.
Explanation:
Gauss's law states that the total (net) flux of an electric field at points on a closed surface is directly proportional to the electric charge enclosed by that surface.
This ultimately implies that, Gauss's law relates the electric field at points on a closed surface to the net charge enclosed by that surface.
This electromagnetism law was formulated in 1835 by famous scientists known as Carl Friedrich Gauss.
Mathematically, Gauss's law is given by this formula;
ϕ = (Q/ϵ0)
Where;
ϕ is the electric flux.
Q represents the total charge in an enclosed surface.
ε0 is the electric constant.
Hence, the statement which is true of the electric field at a distance from the source charge is that it is directly proportional to the source charge.
Answer:
1) Newton's first law of motion states an object will remain at rest or in uniform will be in uniform motion in a straight line unless a force acts on it
2) Newton's second law states the acceleration of an object is directly proportional to the applied force acting on an object and inversely proportional to the mass of the object
Explanation:
1) With Newton's first law, we are able arrange things within a space and schedule meetings in time knowing that they will remain in place unless an external force changes their positions
2) An example of Newton's second law of motion is that small objects such as a ball are easily accelerated and can be given appreciable acceleration for flight by single, one time contact (such as kicking the ball) while larger objects such as a rock require sustained force application to change their location.
The working distance gets shorter as the magnification gets bigger. In order to focus, the high-power objective lens must be significantly nearer to the specimen than the low-power lens. Magnification is negatively correlated with working distance.
Magnification change The magnification of a specimen is increased by switching from low power to high power. The magnification of an image is determined by multiplying the magnification of the objective lens by the magnification of the ocular lens, or eyepiece.
The geometry of the optical system connects the magnifying power, or how much the thing being observed seems expanded, and the field of view, or the size of the object that can be seen.
To know more about working distance
brainly.com/question/13551539
#SPJ4
Answer:
(a) Ferromagnet
Explanation:
Ferromagnetism is defined as the property by which certain magnets form the permanent magnets.
It is tone of the strong magnetism and it is common phenomenon of magnet in the everyday life of magnetism.
Permanent magnets are made up of ferromagnetic material, in this if the magnetic field is applied then this material is magnetized but do not losses its magnetic property after removal of external magnetic field.