Me just so I can ask a question
(a) By the fundamental theorem of calculus,
<em>v(t)</em> = <em>v(0)</em> + ∫₀ᵗ <em>a(u)</em> d<em>u</em>
The particle starts at rest, so <em>v(0)</em> = 0. Computing the integral gives
<em>v(t)</em> = [2/3 <em>u</em> ³ + 2<em>u</em> ²]₀ᵗ = 2/3 <em>t</em> ³ + 2<em>t</em> ²
(b) Use the FTC again, but this time you want the distance, which means you need to integrate the <u>speed</u> of the particle, i.e. the absolute value of <em>v(t)</em>. Fortunately, for <em>t</em> ≥ 0, we have <em>v(t)</em> ≥ 0 and |<em>v(t)</em> | = <em>v(t)</em>, so speed is governed by the same function. Taking the starting point to be the origin, after 8 seconds the particle travels a distance of
∫₀⁸ <em>v(u)</em> d<em>u</em> = ∫₀⁸ (2/3 <em>u</em> ³ + 2<em>u</em> ²) d<em>u</em> = [1/6 <em>u</em> ⁴ + 2/3 <em>u</em> ³]₀⁸ = 1024
Step-by-step explanation:
we cannot see any graphic or so.
no clue, what these sides (?) are, and how they are related to GI and to each other.
so, it is not possible to give you an answer.
Answer:
For the first question(B)
x=-2
x=5
For part C, the question is not clear
For the last question, the approximated value is -5/4