The rate equation is given as:
k = A e^(- Ea / RT)
Dividing state 1 and state 2:
k1/k2 = e^(- Ea / RT1) / e^(- Ea / RT2)
k1/k2 = e^[- Ea / RT1 - (- Ea / RT2)]
k1/k2 = e^[- Ea / RT1 + Ea / RT2)]
Taking the ln of both sides:
ln (k1/k2) = - Ea / RT1 + Ea / RT2
ln (k1/k2) = - Ea / R (1/T1 - 1/T2)
Since k2 = 4k1, therefore k1/k2 = ¼
ln (1/4) = [- (56,000 J/mol) / (8.314 J / mol K)] (1/273
K – 1/ T2)
2.058 x 10^-4 = 1/273 – 1/T2
T2 = 289.25 K
Answer:
Classifying stars according to their spectrum is a very powerful way to begin to understand how they work. As we said last time, the spectral sequence O, B, A, F, G, K, M is a temperature sequence, with the hottest stars being of type O (surface temperatures 30,000-40,000 K), and the coolest stars being of type M (surface temperatures around 3,000 K). Because hot stars are blue, and cool stars are red, the temperature sequence is also a color sequence. It is sometimes helpful, though, to classify objects according to two different properties. Let's say we try to classify stars according to their apparent brightness, also. We could make a plot with color on one axis, and apparent brightness on the other axis, like this:
Explanation:
Answer:
A good society has a transparent talk, they share all matters related to the society, hence everyone knows what's going on. This is why collectiveness leads to a good society.
If my answer helped, kindly mark me as the brainliest!!
Thank You!!
When CaSO4 → Ca2+ + SO4
So when we have Ksp = [Ca2+][SO4]
when Ksp = 4.93 x 10^-5
and [SO4] = 0.02 M
so by substitution we can get [Ca2+]
4.93x10^-5 = [Ca2+] [0.02]
∴ [Ca2+] = 0.0025 mol/L
∴ the moles of calcium chloride = 0.0025 mol / L * 1.5 L
= 0.00167 mol