Answer:
Buffer is the chemical substance that addition of acids and bases, maintaining constant environment,its called Buffer.
Explanation:
- Buffers are use in the system to maintain the value of pH, and the contain the pH value is not to change.
- Buffer maintain the body of pH for the optimal activity,and they are solution of pH constant.
- Buffer in used in the lab and that to maintain growth of the micro tissues and the culture media.
- Buffer are used in maintain necessary optimal reaction activity,determine the indicator of solution with pH.
- Buffer capacity is that concentration to the buffering agent, is the very small increase,buffer capacity to the pH is 32% , of the maximum value of pH.
- Buffers in a acid regions to the desired of that value to the particular buffer agent.
- Buffers can be made from that a mixture of the base and acid, buffer can be a wide range of the obtained.
- Buffers that the pH calculation and they required to performed in the critic acid that the overlap over the buffer range.
Answer:
There are 0.09996826 moles per liter of the solution.
Explanation:
Molar mass of HNO3: 63.02
Convert grams to moles
0.63 grams/ 63.02= 0.009996826
Convert mL to L and place under moles (mol/L)
100mL=0.1 L
0.009996826/0.1= 0.09996826 mol/L
B. The reason the temperature experienced no change in group c is because it was likely the control group.
I cannot read question c, the monitor refresh is obscuring the text.
Spectroscopy be used to distinguish between the following is the compound B has a peak at 3200 – 3500 cm⁻¹ in its IR spectrum.
<h3>What is spectroscopy?</h3>
Spectroscopy is the study of emission or absorption of light. It is used to study the structure of atoms and molecules.
The three types of spectroscopy are:
- atomic absorption spectroscopy (AAS)
- atomic emission spectroscopy (AES)
- atomic fluorescence spectroscopy (AFS)
Thus, the correct option is B, the compound B has a peak at 3200 – 3500 cm⁻¹ in its IR spectrum.
Learn more about spectroscopy
brainly.com/question/5402430
#SPJ1
Answer: 600 kJ
-
Explanation:
C₃H₈ (g) + 5 O₂ (g) =============== 3 CO₂ (g) + 4 H₂O (l)
Δ⁰Hf kJ/mol -104 0 -393.5 -285.8
Δ⁰Hcomb C₃H₈ = 3(-393.5) + 4 (-285.80) - (-104) kJ/mol
Δ⁰Hcomb = 2219.70 kJ/mol
n= m /MW MW c₃H₈ = 44.1 g/mol
n= 12 g/44.1 g/mol = 0.27 mol
then for 12 g the heat released will be
0.27 mol x 2219.70 kJ/mol = 600 KJ