Answer:
rain is water in molten state
hails are water in solid form.
hope it helps
Plz mark me as brainleist if helps
Have a great day ahead
<u>Answer:</u> When bleach is mixed with water, it produces hypochlorous acid.
<u>Explanation:</u>
The chemical name for bleach is sodium hypochlorite. When this compound is reacted with water, it produces hypochlorous acid and sodium hydroxide.
The chemical equation for the reaction of sodium hypochlorite and water follows:

By Stoichiometry of the reaction:
1 mole of sodium hypochlorite reacts with 1 mole of water to produce 1 mole of hypochlorous acid and 1 mole of sodium hydroxide.
Hence, when bleach is mixed with water, it produces hypochlorous acid.
Answer:
Methods of soil conservation are listed below.
Explanation:
The major sources of soil erosion include water,wind and tillage. In order to mitigate or prevent soil erosion, some of the following techniques can be implemented:
- <u>Contour Farming: </u>Planting in row patterns that run level around a hill — as opposed to the up and down the slope pattern.This reduces runoffs and consequently water erosion.
- <u>Crop Rotation:</u> This involves planting crops with high residue (e.g corn, small grains, e.t.c) in rotation,as the layer of residue would protect the topsoil.
- <u>Built in structural diversion</u> : Used often for gully control, to regulate flow of water away from the field and through designated desired paths.
- <u>Conservation Tillage</u>: This involves methods such as no-till planting, strip rotary tillage, etc, which do not allow the soil surface to be smooth and bare, but instead covered with crop residue that protects the soil from eroding forces.
Answer:
V2 = 35.967cm^3
Explanation:
Given data:
P1 = 0.2atm
P2 = 1.4atm
V1 = 250cm^3
V2 = ?
T1 = 10°C + 273 = 283K
T2 = 12°C + 273 = 285K
Apply combined law:
P1xV1/T1 = P2xV2/T2 ...eq1
Substituting values:
0.2 x 250/283 = 1.4 x V2/285
Solve for V2:
V2 = 14250/396.2
V2 = 35.967cm^3
Answer:
pH = 9.48
Explanation:
We have first to realize that NH₃ is a weak base:
NH₃ + H₂O ⇔ NH₄⁺ + OH⁻ Kb = 1.8 x 10⁻⁵
and we are adding this weak base to a solution of NH₄NO₃ which being a salt dissociates 100 % in water.
Effectively what we have here is a buffer of a weak base and its conjugate acid. Therefore, we need the Henderson-Hasselbach formula for weak bases given by:
pOH = pKb + log ( [ conjugate acid ] / [ weak base ]
mol NH₃ = 0.139 L x 0.39 M = 0.054 mol
mol NH₄⁺ = 0.169 L x 0.19 M = 0.032 mol
Now we have all the information required to calculate the pOH ( Note that we dont have to calculate the concentrations since in the formula they are a ratio and the volume will cancel out)
pOH = -log(1.8 x 10⁻⁵) + log ( 0.032/0.054) = 4.52
pOH + pH = 14 ⇒ pH = 14 - 4.52 = 9.48
The solution is basic which agrees with NH₃ being a weak base.