The molar mass of NH4OH is 35
Answer:
C. If it is tested and the evidence does not support it.
Explanation:
A hypothesis is more less a scientific guess. Before such a guess or prediction is made, empirical observations and deductions are first made. It is from the result of the observations that a hypothesis statement is made.
For a hypothesis to become widely adopted and accepted, it must be testable within the limits of the experiment as described by the proposer. When subjected to test and it agrees, the status of a hypothesis can be upgraded.
If the hypothesis is tested and evidence contrasts the result being sort for, a hypothesis will be discarded.
You will need a periodic table to help you answer this problem. The atomic numbers are arrange from lowest to highest in the periodic table. You can locate element number 55 to be Cesium with an atomic weight of 132.905 amu. So, you start from element 56. The following elements are:
56 Barium 137.328 amu
57 Lanthanium 138.905 amu
58 Cerium 140.116 amu
59 <span>Praseodymium 140.908 amu
60 Neodymium 144.243 amu
Neodymium is already greater than 144 amu. Therefore, these elements only include Barium, Lanthanium, Cerium and Praseodymium.</span>
Answer:
Making oxygen
Oxygen can be made from hydrogen peroxide, which decomposes slowly to form water and oxygen:
hydrogen peroxide → water + oxygen
2H2O2(aq) → 2H2O(l) + O2(g)
The rate of reaction can be increased using a catalyst, manganese(IV) oxide. When manganese(IV) oxide is added to hydrogen peroxide, bubbles of oxygen are given off.
Apparatus arranged to measure the volume of gas in a reaction. Reaction mixture is in a flask and gas travels out through a pipe in the top and down into a trough of water. It then bubbles up through a beehive shelf into an upturned glass jar filled with water. The gas collects at the top of the jar, forcing water out into the trough below.
To make oxygen in the laboratory, hydrogen peroxide is poured into a conical flask containing some manganese(IV) oxide. The gas produced is collected in an upside-down gas jar filled with water. As the oxygen collects in the top of the gas jar, it pushes the water out.
Instead of the gas jar and water bath, a gas syringe could be used to collect the oxygen.