warm fluids are less dense than cold fluids
Answer:
Option c) are perpendicular to the electric field
Explanation:
Equipotential surfaces are perpendicular to the electric field. the electric field lines are projected outwards from the equipotential surface, i.e., the lines of the electric field are at 90
to the equipotential surface.
Equipotential surface are those surfaces that have the same potential at any point on the surface. Thus the potential difference at any point on the surface is zero due to same potential.
Any charge particle on this surface will move in a perpendicular direction to the Coulombian force. No work is done by the force on a particle moving on an equipotential surface.
Given Information:
Angular displacement = θ = 51 cm = 0.51 m
Radius = 1.8 cm = 0.018 m
Initial angular velocity = ω₁ = 0 m/s
Angular acceleration = α = 10 rad/s
²
Required Information:
Final angular velocity = ω₂ = ?
Answer:
Final angular velocity = ω₂ = 21.6 rad/s
Explanation:
We know from the equations of kinematics,
ω₂² = ω₁² + 2αθ
Where ω₁ is the initial angular velocity that is zero since the toy was initially at rest, α is angular acceleration and θ is angular displacement.
ω₂² = (0)² + 2αθ
ω₂² = 2αθ
ω₂ = √(2αθ)
We know that the relation between angular displacement and arc length is given by
s = rθ
θ = s/r
θ = 0.51/0.018
θ = 23.33 radians
finally, final angular velocity is
ω₂ = √(2αθ)
ω₂ = √(2*10*23.33)
ω₂ = 21.6 rad/s
Therefore, the top will be rotating at 21.6 rad/s when the string is completely unwound.
Average velocity over a given time interval is the distance traveled divided by the time: