1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
soldier1979 [14.2K]
3 years ago
11

Name the four major forces in the universe that act over long distance as I greater than the nucleus of an atom?

Physics
1 answer:
GalinKa [24]3 years ago
4 0
Forces in the universe that act over long distance, meaning the distance is greater than the diameter of the nucleus of the atom are:

1. Electrostatic force or Coulomb force: Fc=(k*Q₁*Q₂)/r²,

2. Gravitational force: Fg=(G*m₁*m₂)/r²,

3. Magnetic force: Fm=qvB,

4. London dispersion force, also known as one of the van der Waals forces. 
You might be interested in
I WILL GET BRAINLIEST PLS HELP A student attempts to push a box across the floor. The student decides to create a free-body diag
MissTica

Answer: The gravitational

Explanation: The student is pushing the box so u have to have gravitational force so it could move

5 0
2 years ago
Use examples to explain how the geosphere interacts with two other of Earth's spheres. Explain the interaction for each using co
Orlov [11]

The geosphere interacts with the hydrosphere when water causes rock to erode. The atmosphere provides the geosphere with heat and energy for erosion, and the geosphere reflects the sun's energy back into the atmosphere.

7 0
3 years ago
Read 2 more answers
I NEED HELP RIGHT NOW PLEASE HELP WITH question 2-13 !!!!! 19pts to anyone who helps me !!!!!!!
Mama L [17]
<span>True
</span><span>True
</span><span>False*
</span><span>False*
</span><span>True
</span><span>True
</span><span>False
A,B,AB,O
10.)?
11.)</span><span>water
carbon dioxide
12.)</span><span>geocentric
</span>13.)<span>Juptier</span>
5 0
3 years ago
A hydrogen atom has a diameter of about 12.7 nm, express this diameter in centimeters.
Andrej [43]
1 meter = 1e9 nm
To get meters, divide nanometers by 1e9: 9.95nm / 1x10^9 = 9.95x10^-9 meters
Answer: 9.95e-9 meters
3 0
2 years ago
Read 2 more answers
A man is standing on a weighing machine on a ship which is bobbing up and down with simple harmonic motion of period T=15.0s.Ass
STALIN [3.7K]

Well, first of all, one who is sufficiently educated to deal with solving
this exercise is also sufficiently well informed to know that a weighing
machine, or "scale", should not be calibrated in units of "kg" ... a unit
of mass, not force.  We know that the man's mass doesn't change,
and the spectre of a readout in kg that is oscillating is totally bogus.

If the mass of the man standing on the weighing machine is 60kg, then
on level, dry land on Earth, or on the deck of a ship in calm seas on Earth,
the weighing machine will display his weight as  588 newtons  or as 
132.3 pounds.  That's also the reading as the deck of the ship executes
simple harmonic motion, at the points where the vertical acceleration is zero.

If the deck of the ship is bobbing vertically in simple harmonic motion with
amplitude of M and period of 15 sec, then its vertical position is 

                                     y(t) = y₀ + M sin(2π t/15) .

The vertical speed of the deck is     y'(t) = M (2π/15) cos(2π t/15)

and its vertical acceleration is          y''(t) = - (2πM/15) (2π/15) sin(2π t/15)

                                                                = - (4 π² M / 15²)  sin(2π t/15)

                                                                = - 0.1755 M sin(2π t/15) .

There's the important number ... the  0.1755 M.
That's the peak acceleration.
From here, the problem is a piece-o-cake.

The net vertical force on the intrepid sailor ... the guy standing on the
bathroom scale out on the deck of the ship that's "bobbing" on the
high seas ... is (the force of gravity) + (the force causing him to 'bob'
harmonically with peak acceleration of  0.1755 x amplitude).

At the instant of peak acceleration, the weighing machine thinks that
the load upon it is a mass of  65kg, when in reality it's only  60kg.
The weight of 60kg = 588 newtons.
The weight of 65kg = 637 newtons.
The scale has to push on him with an extra (637 - 588) = 49 newtons
in order to accelerate him faster than gravity.

Now I'm going to wave my hands in the air a bit:

Apparent weight = (apparent mass) x (real acceleration of gravity)

(Apparent mass) = (65/60) = 1.08333 x real mass.

Apparent 'gravity' = 1.08333 x real acceleration of gravity.

The increase ... the 0.08333 ... is the 'extra' acceleration that's due to
the bobbing of the deck.

                        0.08333 G  =  0.1755 M

The 'M' is what we need to find.

Divide each side by  0.1755 :          M = (0.08333 / 0.1755) G

'G' = 9.0 m/s²
                                       M = (0.08333 / 0.1755) (9.8) =  4.65 meters .

That result fills me with an overwhelming sense of no-confidence.
But I'm in my office, supposedly working, so I must leave it to others
to analyze my work and point out its many flaws.
In any case, my conscience is clear ... I do feel that I've put in a good
5-points-worth of work on this problem, even if the answer is wrong .

8 0
2 years ago
Other questions:
  • A coating is being applied to reduce the reflectivity of a pane of glass to light with a wavelength of 522 nm incident near the
    9·1 answer
  • A volume of cool air rapidly descends from the top of a mountain. the air is a poor thermal conductor, but its temperature incre
    11·1 answer
  • The strong nuclear force holds together which two particles in an atom?
    13·1 answer
  • Two points are located on a rigid wheel that is rotating with decreasing angular velocity about a fixed axis. Point A is located
    12·1 answer
  • The rate (in liters per minute) at which water drains from a tank is recorded at half-minute intervals. Use the average of the l
    9·1 answer
  • A 15-gram bullet moving at 1502 m/s plunges into 2.5 kg of paraffin wax. The wax was initially at 31°C. Assuming that all the bu
    9·1 answer
  • Which element is LEAST likely to react with Magnesium?
    11·1 answer
  • Where is the deepest cave in the world? How far down is it located?
    10·1 answer
  • Which statement describes how work and power are similar?
    7·1 answer
  • Keeping in mind that not all flasks are vacuum, Please help me explain how other flasks prevent heat loss?​
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!