Answer:
Final Length = 30 cm
Explanation:
The relationship between the force applied on a string and its stretching length, within the elastic limit, is given by Hooke's Law:
F = kΔx
where,
F = Force applied
k = spring constant
Δx = change in length of spring
First, we find the spring constant of the spring. For this purpose, we have the following data:
F = 50 N
Δx = change in length = 25 cm - 20 cm = 5 cm = 0.05 m
Therefore,
50 N = k(0.05 m)
k = 50 N/0.05 m
k = 1000 N/m
Now, we find the change in its length for F = 100 N:
100 N = (1000 N/m)Δx
Δx = (100 N)/(1000 N/m)
Δx = 0.1 m = 10 cm
but,
Δx = Final Length - Initial Length
10 cm = Final Length - 20 cm
Final Length = 10 cm + 20 cm
<u>Final Length = 30 cm</u>
The ions are in fixed positions.
Explanation:
Ionic solids are poor conductors of electricity because their ions are fixed in position. Their ions are not free to move about. They are fixed in crystal lattices.
- For the conduction of electricity, compounds must possess free mobile electrons and moving ions in solution.
- Ionic compounds are formed by the electrostatic attraction between a metallic and non-metallic ion.
- They actually contain ions but their ions are locked up.
- They are not free to move about.
- Electrical conduction involves ion mobility.
- In molten and aqueous forms, they are able to conduct electricity because their ions are then mobile.
learn more:
Ionic compound brainly.com/question/6071838
#learnwithBrainly
Ahhh this going to be confusing sorry...
1. α = Δω / Δt = 28 rad/s / 19s = 1.47 rad/s²
2. Θ = ½αt² = ½ * 1.47rad/s² * (19s)² = 266 rads
3. I = ½mr² = ½ * 8.7kg * (0.33m)² = 0.47 kg·m²
4. ΔEk = ½Iω² = ½ * 0.47kg·m² * (28rad/s)² = 186 J
5. a = α r = 1.47rad/s² * 0.33m = 0.49 m/s²
6. a = ω² r = (14rad/s)² * 0.33m = 65 m/s²
7. v = ω r = 28rad/s * ½(0.33m) = 4.62 m/s
8. s = Θ r = 266 rads * 0.33m = 88 m
But rocks are not unchangeable! Just like the water cycle, rocks undergo changes of form in a rock cycle. A metamorphic rock can become an igneous rock, or a sedimentary rock can become a metamorphic one. Unlike the water cycle, you can’t see the process happening on a day-to-day basis. Rocks change very slowly under normal conditions, but sometimes catastrophic events like a volcanic eruption or a flood can speed up the process. So what are the three types of rocks, and how do they change into each other? Keep reading to find out!