<span>The best way to cool soft and thick foods when using the refrigerator is by having them to be placed and poured on a pan or another way is by having them to be placed in one container in which they are in a water bath, to be heated of.</span>
Answer:
C. 
Explanation:
Let initial charges on both spheres be,

When the sphere C is touched by A, the final charges on both will be,
#Now, when C is touched by B, the final charges on both of them will be:

Now the force between A and B is calculated as:

Hence the electrostatic force becomes 3F/8
Answer:In first case
Explanation:
When two People pull the spring, let the applied force by each person be 
and spring constant of spring be k
so Total force is 
total extension according to Hooke's law is

When they detach the spring and apply force in opposite direction then force on either side is F so net extension is

so in first case there will be more extension
Answer:
a. E = 122.4 N/C
b. E = 58.2 N/C
c. E = 0
Explanation:
The electric field at an arbitrary point away from the axis of the cylinder can found by applying Gauss’ Law, which states that an electric flux through a closed surface is equal to the total charge enclosed by this surface divided by electric permittivity.
In order to apply this law, we have to draw an imaginary cylindrical surface of arbitrary height ‘h’ and radius ‘r’, which is equal to the point where the E-field is asked.
A. For the outside of the cylinder, we will draw our imaginary surface with r = 1.97.

B. This time our imaginary surface should be inside the cylinder, therefore the enclosed charge will be less than that of part A.

C. In this case our imaginary surface will be inside the cylinder, where there is no charge at all. Therefore, the enclosed charge will be zero and the electric field will be zero.
That is correct. Or so I believe. Either more or less than the other on the amount of protons and electrons, you can get either an unstable or a stable atom of an element.