Answer:
v = 120 m/s
Explanation:
We are given;
earth's radius; r = 6.37 × 10^(6) m
Angular speed; ω = 2π/(24 × 3600) = 7.27 × 10^(-5) rad/s
Now, we want to find the speed of a point on the earth's surface located at 3/4 of the length of the arc between the equator and the pole, measured from equator.
The angle will be;
θ = ¾ × 90
θ = 67.5
¾ is multiplied by 90° because the angular distance from the pole is 90 degrees.
The speed of a point on the earth's surface located at 3/4 of the length of the arc between the equator and the pole, measured from equator will be:
v = r(cos θ) × ω
v = 6.37 × 10^(6) × cos 67.5 × 7.27 × 10^(-5)
v = 117.22 m/s
Approximation to 2 sig. figures gives;
v = 120 m/s
Hey the answer to the question is
m = 0.40
Postive and negatives attract, positive and positive repel. answer is negatively charged pipe.
sound waves and light energy are not "affected" by static electricity
Given:
Circumference = 2 m
Angular speed, ω = 1 rev/s = 2π radians/s
If the radius is r, then
2πr = 2
r = 1/π m
The linear (tangential) speed is
v = rω
= (1/π m)*(2π rad/s) = 0.5 m/s
Answer: 0.5 m/s
Answer:
Explanation:
Given
Mass of solid uniform disk 
radius of disk 
mass of lump 
distance of lump from axis 
Moment of inertia is the distribution of mass from the axis of rotation
Initial moment of inertia of disk 

Final moment of inertia
=Moment of inertia of disk+moment of inertia of lump about axis



