Answer:
you need to be able to have long enough to reach and have it far away from things that are going to cause accidents
They communicate their result to the scientific community- so to speak
I already answered this quesiton. The fact is that there are only two kind of poles and since the two taped poles of the magnets labeled A and B attracts one to each other, we know that the two taped poles of the first two magnets are oppsosite.
Then, the taped pole of the third magnet has to be equal to one of the first two taped poles and opposite to the other of the first two taped poles.
That drives you to conclude (predict) that when she brings the taped end of the third magnet (magnet C) near each of the first two magntes, in one case they will attract each other and in the other case they will repele mutually.
Answer:
The efficiency of the system is 63.7 %
Explanation:
Given;
input power of the motor, = 1.5 kW = 1,500 W
mass of the car lifted, m = 1300 kg
height through which the car was lifted, h = 1.8 m
time, t = 24 s
The output power of the motor is calculated as;
Output Power = F x v
= (mg) x (d/t)
= (1300 x 9.8) x (1.8 / 24)
= 12,740 x 0.075
= 955.5 W
The efficiency of the system is calculated as;

The correct answer is 63.7%
Answer:

Explanation:
<u>Net Forces and Acceleration</u>
The second Newton's Law relates the net force
acting on an object of mass m with the acceleration a it gets. Both the net force and the acceleration are vector and have the same direction because they are proportional to each other.

According to the information given in the question, two forces are acting on the swimming student: One of 256 N pointing to the south and other to the west of 104 N. Since those forces are not aligned, we must add them like vectors as shown in the figure below.
The magnitude of the resulting force
is computed as the hypotenuse of a right triangle


The acceleration can be obtained from the formula

Note we are using only magnitudes here


