1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Andrews [41]
3 years ago
15

Calculus 2 master needed; stuck on evaluating the integral please show steps

8x%2F2%29tan%5E5%28x%2F2%29%7D%20%5C%2C%20dx" id="TexFormula1" title="\int {sec(x/2)tan^5(x/2)} \, dx" alt="\int {sec(x/2)tan^5(x/2)} \, dx" align="absmiddle" class="latex-formula"> I am thinking that we want to split up the tan^5, making \int {sec(x/2)tan^2 tan^3(x/2)} \, dx and then \int {sec(x/2)*sec^2x-1* tan^3(x/2)} \, dx but I am not sure this is correct. Can anyone help? The thing I am unsure of is that tan^3 is still odd, so would we do the same thing again and factor so we will be left with just tanx?
Mathematics
2 answers:
Aleks [24]3 years ago
8 0

Answer:

= 2 (sec (x/2) - <u>2sec³(x/2) </u> +  <u>sec⁵(x/2)</u> ) + C

                              3                     5

Step-by-step explanation:

∫sec(x/2) tan⁵(x/2) dx

apply u substitute u = x/2

= ∫sec(u) tan⁵(u) * 2du

= 2 *  ∫sec(u) tan⁴(u) tan(u) du

= 2 *  ∫sec(u) (tan²(u))² tan(u) du

= 2 *  ∫sec(u) (-1 + sec²(u))² tan(u) du

apply u substitute v = sec(u)

= 2 * ∫(-1 + v²)² dv

expand

= 2 * ∫1 - 2v² + v⁴ dv

sum

= 2 (v - <u>2v³</u> +<u> v⁵</u> )

             3      5

substitute it back

= 2 (sec (x/2) - <u>2sec³(x/2) </u> +  <u>sec⁵(x/2)</u> )

                              3                     5

add constant to the solution.

= 2 (sec (x/2) - <u>2sec³(x/2) </u> +  <u>sec⁵(x/2)</u> ) + C

                              3                     5

kakasveta [241]3 years ago
7 0

Answer:

\int \sec(\frac{x}{2})\tan^5({\frac{x}{2}})dx=\frac{2\sec^5(\frac{1}{2}x)}{5}-\frac{4\sec^3(\frac{1}{2}x)}{3}+2\sec(\frac{1}{2}x)+C

Step-by-step explanation:

So we have the integral:

\int \sec(\frac{x}{2})\tan^5({\frac{x}{2}})dx

First, let's use substitution to get rid of the x/2. I'm going to use the variable y. So, let y be x/2. Thus:

y=\frac{x}{2}\\dy=\frac{1}{2}dx\\2dy=dx

Therefore, the integral is:

=2\int \sec(y)\tan^5(y)dy

Now, as you had done, let's expand the tangent term. However, let's do it to the fourth. Thus:

=2\int \sec(y)\tan^4(y)\tan(y)dy

Now, we can use a variation of the trigonometric identity:

\tan^2(y)+1=\sec^2(y)

So:

\tan^2(y)=\sec^2(y)-1

Substitute this into the integral. Note that tan^4(x) is the same as (tan^2(x))^2. Thus:

=2\int \sec(y)(\tan^2(y))^2\tan(y)dy\\=2\int \sec(y)(\sec^2(y)-1)^2\tan(y)dy

Now, we can use substitution. We will use it for sec(x). Recall what the derivative of secant is. Thus:

u=\sec(y)\\du=\sec(y)\tan(y)dy

Substitute:

2\int (\sec^2(y)-1)^2(\sec(y)\tan(y))dy\\=2\int(u^2-1)^2 du

Expand the binomial:

=2\int u^4-2u^2+1du

Spilt the integral:

=2(\int u^4 du+\int-2u^2du+\int +1du)

Factor out the constant multiple:

=2(\int u^4du-2\int u^2du+\int(1)du)

Reverse Power Rule:

=2(\frac{u^{4+1}}{4+1}-2(\frac{u^{2+1}}{2+1})+(\frac{u^{0+1}}{0+1}}))

Simplify:

=2(\frac{u^5}{5}-\frac{2u^3}{3}+u)

Distribute the 2:

=\frac{2u^5}{5}-\frac{4u^3}{3}+2u

Substitute back secant for u:

=\frac{2\sec^5(y)}{5}-\frac{4\sec^3(y)}{3}+2\sec(y)

And substitute back 1/2x for y. Therefore:

=\frac{2\sec^5(\frac{1}{2}x)}{5}-\frac{4\sec^3(\frac{1}{2}x)}{3}+2\sec(\frac{1}{2}x)

And, finally, C:

=\frac{2\sec^5(\frac{1}{2}x)}{5}-\frac{4\sec^3(\frac{1}{2}x)}{3}+2\sec(\frac{1}{2}x)+C

And we're done!

You might be interested in
Given that (5,-4) is on the graph of f(x) find the corresponding point for the function -1/4f(x)
dusya [7]

For (x, f(x)) = (5, -4), you want to find (x, -1/4·f(x)). That will be

... (5, -1/4·(-4)) = (5, 1)

7 0
4 years ago
The average score of all high school students in math and science is 150 with a standard deviation of 25. A random sample of 125
Evgesh-ka [11]

Answer:

The difference is significative we reject H₀

Step-by-step explanation:

Normal Distribution

Population mean            X₁    =  150

Population standard deviation       σ  =  25

Sample size        n   =  125

Sample mean     X₂   =  158

1.-CI =  95 %   significance level    α  =  5%    α = 0,05

From z-table α = 0,05    z(c)  =   1,64    ( the test is one-tail test to the right)

2.-Hypothesis Test

Null Hypothesis                                    H₀        X₂  =  X₁

Alternative Hypothesis                        Hₐ        X₂  >  X₁

3.-To compute z(s)

z(s)  =  ( X₂  -  X₁ ) / σ/√n

z(s)  =    8 * 11,14 /25

z(s)  =  89,12/25

z(s)  = 3,56

4.- Comparing  z(s)  and z(c)

z(s)  > z(c)

Then z(s) is in the rejection region we reject H₀

7 0
3 years ago
The four people at Carla's birthday will get one-quarter (one fourth) of the cake each. Carla puts 16 candies on the cake so tha
natima [27]
You would do 16 divided by 4 to get your answer. The answer is 4.
3 0
3 years ago
Read 2 more answers
What is the width of a rectangle with an area of 5/8 inches2 and a length of 1o inches
Nata [24]
I hope this helps you



Area=length.width



Area=1.5/8



Area=5/8
5 0
3 years ago
What is 3 equivalent ratios for 1/6
Vlada [557]
Here are some examples of equivalent ratios for 1/6:
2:12, 3:18, 4:24, 5:30, 6:36

All of these simplify to 1/6, which makes them equivalent. Hope this helps! :)
7 0
3 years ago
Read 2 more answers
Other questions:
  • Solve this inequality: 3p – 16 &lt; 20.
    12·1 answer
  • Solve for x.<br><br><br><br> Enter your answer in the box.<br><br> x = <br> °
    14·2 answers
  • Find the value of radius in a cylinder with a volume of 800 and a height of 8
    15·1 answer
  • Describe the error in finding the product (big ideas math)
    8·1 answer
  • Item 19 Question 1 A nurse is making identical first aid bags for patients using 72 antiseptic wipes, 55 adhesive bandages, and
    13·1 answer
  • B is the midpoint of AC. If AB = x+5 and BC = 2x-11 , find the measure of AB .
    5·1 answer
  • Based on the lesson, identify the first operation needed to solve the following equation. x/11 - 2 = 3 multiplication subtractio
    10·2 answers
  • Is 9x^2 - 12x + 4 a perfect square? Why?
    6·2 answers
  • Amal and ji both rent out their food trucks. the table shows the amounts amal and ji charge per hour to rent their food truck wh
    6·1 answer
  • Translate each expression
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!