Experiment Title: Does soil pH affect the color of tomato fruits?
A. Thesis statement: A high soil pH yields red tomatoes.
Set up: 9 pots each filled with soil of varying pH will be used in this experiment. The pots will be assigned into three groups: The control group will contain soil that has a neutral pH, the basic group will contain soil that has a pH greater than 7, and the acidic group will contain soil that has a pH lesser than 7.
The amount of water and sunlight received by the groups should be equal to eliminate other factors that could possibly affect the color variations. By keeping these factors the same, color variation would solely depend on the pH of the soil.
Control Group: It is necessary to keep the soil pH of the neutral group to be exactly 7. By making it neutral, we would be able to know what the natural color is exhibited by the tomato fruits.
The dependent variable in this experiment would be the color exhibited by the tomato fruits. The color exhibited is believed to be dependent on the pH of the soil. By having three samples each with varying pH, it is expected that there will be color variation.
Data Collection:
When the tomato plants bear fruits, determine the color of the fruits produced from each group. Create a table with two columns: the first column would be the group where the fruit belongs and the second column would be the color exhibited. Compare the data gathered from the three groups.
Data analysis:
A scenario which will support your hypothesis would be: the group which contained the basic soil produced red tomatoes. The neutral group produced orange tomato fruits while the acidic group produced yellow tomato fruits. It was found out that the higher the soil pH, the fruit color takes on a redder hue whereas if the pH keeps on going down, the fruit takes on a yellow a hue.
Glucagon - stored in the pancreas
The Steady State Theory state that the density of the universe was remaining constant.
<h3>Steady State Theory:</h3>
In cosmology, a steady-state theory is a perspective that holds that the universe is constantly expanding while maintaining a constant average density. According to this theory, the matter is continuously created to form new stars and galaxies at the same rate that older ones fade away due to their expanding distance and accelerating recession. The average density and configuration of galaxies are the same as any location in a steady-state universe, which has no beginning or end in time.
British scientists Sir Hermann Bondi, Thomas Gold, and Sir Fred Hoyle first proposed the hypothesis in 1948. Hoyle expanded on it in order to address issues that had come up in relation to the alternative big-bang theory. According to the hypothesis, in order to maintain a constant average density of matter across time, the new matter must constantly be created, primarily as hydrogen. With nearly five times as much dark matter, the amount needed is small and not immediately observable: one solar mass of baryons per cubic megaparsec every year, or one hydrogen atom per cubic meter every billion years.
Learn more about steady-state here:
brainly.com/question/4956578
#SPJ1
The physiological process occurring in the muscle cells that account for the gradual onset of muscle fatigue is called anaerobic the body is breaking down oxygen after than it can get in.
The answer is Liver disease