200 divided by 8=25
25 x 3 <span>=75g</span>
Answer:
A quadratic function can have up to two x-intercepts.
An x-intercept of a quadratic function is also called a zero of the function.
Step-by-step explanation:
None needed.
Answer:
33.89
Step-by-step explanation:
the side lengths are the distances between the corner points of the triangle.
P and Q have the same x value, and they therefore create a side parallel to the y-axis. and it is easy to find the length of this side : it is just the difference of the y values.
PQ = 6 - (-6) = 6 + 6 = 12
QR and RP are trickier.
we need Pythagoras to calculate the length of the direct connection between these points as the Hypotenuse of the right triangles with the differences in x and in y values as the other sides.
QR :
QR² = (-3 - 6)² + (-6 - -2)² = (-9)² + (-4)² = 81 + 16 = 97
QR = sqrt(97) ≈ 9.848857802
RP :
RP² = (6 - -3)² + (-2 - 6)² = 9² + (-8)² = 81 + 64 = 145
RP = sqrt(145) ≈ 12.04159458
the perimeter/circumference of the triangle is the sum of all 3 sides
= 12 + sqrt(97) + sqrt(145) ≈ 33.89
Answer:
The answer is A, C and D
Step-by-step explanation:
a
c
d
Just like at any other time, to add/subtract fractions you need a common denominator.
14)
1/(x^2+2x)+(x-1)/x=1 so we need a common denominator of x(x^2+2x)
[1(x)]/(x(x^2+2x))+[(x-1)(x^2+2x)]/(x(x^2+2x))=[1(x(x^2+2x))]/(x(x^2+2x))
now if you multiply both sides of the equation by x(x^2+2x) you are left with:
x+(x-1)(x^2+2x)=x(x^2+2x)
x+x^3+2x^2-x^2-2x=x^3+2x^2
x^3+x^2-x=x^3-2x^2
x^2-x=-2x^2
3x^2-x=0
x(3x-1)=0, x=0 is an extraneous solution as division by zero is undefined. So the only real solution is:
x=1/3
...
16)
(r+5)/(r^2-2r)-1=1/(r^2-2r) the common denominator we need r^2-2r so
[r+5-1(r^2-2r)]/(r^2-2r)=1/(r^2-2r), multiplying both sides by r^2-2r yields:
r+5-r^2+2r=1
-r^2+3r+5=1
-r^2+3r+4=0
r^2-3r-4=0
(r-4)(r+1)=0, r^2-2r cannot equal zero, r(r-2)=0, r cannot equal 0 or 2...
r=-1 or 4