1.66 M is the concentration of the chemist's working solution.
<h3>What is molarity?</h3>
Molarity (M) is the amount of a substance in a certain volume of solution. Molarity is defined as the moles of a solute per litres of a solution. Molarity is also known as the molar concentration of a solution.
In this case, we have a solution of Zn(NO₃)₂.
The chemist wants to prepare a dilute solution of this reactant.
The stock solution of the nitrate has a concentration of 4.93 M, and he wants to prepare 620 mL of a more dilute concentration of the same solution. He adds 210 mL of the stock and completes it with water until it reaches 620 mL.
We want to know the concentration of this diluted solution.
As we are working with the same solution, we can assume that the moles of the stock solution will be conserved in the diluted solution so:
=
(1)
and we also know that:
n = M x 
If we replace this expression in (1) we have:
x
=
x 
Where 1, would be the stock solution and 2, the solution we want to prepare.
So, we already know the concentration and volume used of the stock solution and the desired volume of the diluted one, therefore, all we have to do is replace the given data in (2) and solve for the concentration which is
:
4.93 x 210 = 620 x
= 1.66 M
This is the concentration of the solution prepared.
Learn more about molarity here:
brainly.com/question/19517011
#SPJ1
Petroleum products<span> are materials derived from crude oil</span><span> as it is processed.
Hope this helps! </span>
Answer:
3.25×10²⁴ molecules
Explanation:
From the question given above, the following data were obtained:
Mass of H₂O = 97.2 g
Number of molecule of H₂O =?
From Avogadro's hypothesis, we understood that:
1 mole of H₂O = 6.02×10²³ molecules
Next, we shall determine the mass of 1 mole of H₂O. This can be obtained as follow:
1 mole of H₂O = (2×1) + 16
= 2 + 16
= 18 g
Thus,
18 g of H₂O = 6.02×10²³ molecules
Finally, we shall determine the number of molecules in 97.2 g of H₂O. This can be obtained as follow:
18 g of H₂O = 6.02×10²³ molecules
Therefore,
97.2 g of H₂O = 97.2 × 6.02×10²³ / 18
97.2 g of H₂O = 3.25×10²⁴ molecules
Thus, 97.2 g of H₂O contains 3.25×10²⁴ molecules.
Answer:
Although the daytime length at the Equator remains 12 hours in all seasons, the duration at all other latitudes varies with the seasons. During the winter, daytime lasts shorter than 12 hours; during the summer, it lasts longer than 12 hours.
Explanation:
Maybe this answer is hopeful in your homework.
Answer:
Argon gas
Explanation:
Between the options given, argon gas is the least reactive. Argon is known as a <em>noble gas</em>, this means that it is located in the group 18 in the periodic table. These gases are known for their low reactivity, under most circumstances.
The <u>electronic configuration</u> of argon helps us see why that is the case: With an atomic number of 18, it has an electronic configuration of 1s² 2s² 2p⁶ 3s² 3p⁶. This means the most external orbital is filled with electrons, meaning that there are not unpaired electrons able to react with other substances.