To fully understand the problem, we use the ICE table to identify the concentration of the species. We calculate as follows:
Ka = 2.0 x 10^-9 = [H+][OBr-] / [HOBr]
HOBr = 0.50 M
KOBr = 0.30 M = OBr-
<span> HOBr + H2O <-> H+ + OBr- </span>
<span>I 0.50 - 0 0.30 </span>
<span>C -x x x
</span>---------------------------------------------
<span>E(0.50-x) x (0.30+x) </span>
<span>Assuming that the value of x is small as compared to 0.30 and 0.50 </span>
<span>Ka = 2.0 x 10^-9 = x (0.30) / 0.50) </span>
<span>x = 3.33 x 10^-9 = H+</span>
pH = 8.48
Answer:56.98496
Explanation:
half if diameter is radius or 1.55 and double the radius is 3.10 or the length of the diameter. you have a height given, so use the radius and heaight to plug it in the circular cylinder calculator and you get 56.98496
Answer:
(a) ΔSº = 216.10 J/K
(b) ΔSº = - 56.4 J/K
(c) ΔSº = 273.8 J/K
Explanation:
We know the standard entropy change for a given reaction is given by the sum of the entropies of the products minus the entropies of reactants.
First we need to find in an appropiate reference table the standard molar entropies entropies, and then do the calculations.
(a) C2H5OH(l) + 3 O2(g) ⇒ 2 CO2(g) + 3 H2O(g)
Sº 159.9 205.2 213.8 188.8
(J/Kmol)
ΔSº = [ 2(213.8) + 3(188.8) ] - [ 159.9 + 3(205.) ] J/K
ΔSº = 216.10 J/K
(b) CS2(l) + 3 O2(g) ⇒ CO2(g) + 2 SO2(g)
Sº 151.0 205.2 213.8 248.2
(J/Kmol)
ΔSº = [ 213.8 + 2(248.2) ] - [ 151.0 + 3(205.2) ] J/K = - 56.4 J/K
(c) 2 C6H6(l) + 15 O2(g) 12 CO2(g) + 6 H2O(g)
Sº 173.3 205.2 213.8 188.8
(J/Kmol)
ΔSº = [ 12(213.8) + 6(188.8) ] - [ 2(173.3) + 15( 205.2) ] = 273.8 J/K
Whenever possible we should always verify if our answer makes sense. Note that the signs for the entropy change agree with the change in mol gas. For example in reaction (b) we are going from 4 total mol gas reactants to 3, so the entropy change will be negative.
Note we need to multiply the entropies of each substance by its coefficient in the balanced chemical equation.