First of all we have to arrange the data in ascending order as shown below:
28, 40, 43, 43, 45, 50, 50
Total number of values = 7
Since the number of values is odd, the median will be the middle value i.e. 4th value which is 43. Median divides the data in two halves:
1st Half = 28, 40, 43
2nd Half = 45, 50, 50
Q1 or the First Quartile is the middle value of the lower or 1st half which is 40.
Q3 or the Third Quartile is the middle value of the upper or second half, which is 50.
IQR or the Inter Quartile Range is the difference of Q3 and Q1.
So, IQR= Q3 – Q1 = 50 – 40 = 10
Thus, IQR for the given data is 10
In order to determine whether the equations are parallel, perpendicular, or neither, let's simply each equation into a slope-intercept form or basically, solve for y.
Let's start with the first equation.

Cross multiply both sides of the equation.


Subtract 6x on both sides of the equation.


Divide both sides of the equation by -5.


Therefore, the slope of the first equation is 4/5.
Let's now simplify the second equation.

Add x on both sides of the equation.


Divide both sides of the equation by -4.


Therefore, the slope of the second equation is -5/4.
Since the slope of each equation is the negative reciprocal of each other, then the graph of the two equations is perpendicular to each other.
Answer:
4 is in the p and 2 in the not p
Step-by-step explanation:
the one with the 40 in p the one with the 12 in p the one with 8 in the p and the one with the 12 with a 3 is in the p the others are in no p.
Answer:

Explanation:
Since, there are two possible outcomes for every toss (head or tail), the sample space for<em> a coin tossed 8 times</em> is 2×2×2×2×2×2×2×2 = 2⁸ = 256.
<em>Landing on heads all 8 times</em> is just one of the possible outcomes: HHHHHHHH ⇒ 1.
Hence, the <em>probability </em>is calculated from its own definition:
Probability = number of favorable outcomes / number of possible outcomes
Full question:
Heng was trying to factor 10x²+5x. She found that the greatest common factor of these terms was 5x and made an area model: What is the width of Heng's area model?
Answer:
The width of the area model is 2x + 1
Step-by-step explanation:
Given
Expression: 10x² + 5x
Factor: 5x
Required
Width of the Area Model
To solve this, I'll assume the area model is Length * Width
Provided that we're to solve for the width of the model.
This implies that; Length = 5x
Area = Length * Width
And
Area = 10x² + 5x
Equate these two
Length * Width = 10x² + 5x
Factorize express on the right hand side
Length * Width = 5x(2x + 1)
Substitute 5x for Length
5x * Width = 5x(2x + 1)
Divide both sides by 5x
Width = 2x + 1
Hence, the width of the area model is 2x + 1